amoghsgopadi's picture
Update README.md
b23a752
|
raw
history blame
4.2 kB
metadata
language: kn
datasets:
  - openslr
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: XLSR Wav2Vec2 Large 53 Kannada by Amogh Gopadi
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR kn
          type: openslr
        metrics:
          - name: Test WER
            type: wer
            value: 27.08

Wav2Vec2-Large-XLSR-53-Kannada

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Kannada using the OpenSLR SLR79 dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows, assuming you have a dataset with Kannada sentence and path fields:


import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

# test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For a sample, see the Colab link in Training Section.

processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input.

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on 10% of the Kannada data on OpenSLR.


import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

# test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section.

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), 
        attention_mask=inputs.attention_mask.to("cuda")).logits
        pred_ids = torch.argmax(logits, dim=-1)
        batch["pred_strings"] = processor.batch_decode(pred_ids)
        return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 27.08 %

Training

90% of the OpenSLR Kannada dataset was used for training.

The colab notebook used for training can be found here.