SetFit with thenlper/gte-small

This is a SetFit model that can be used for Text Classification. This SetFit model uses thenlper/gte-small as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: thenlper/gte-small
  • Classification head: a OneVsRestClassifier instance
  • Maximum Sequence Length: 512 tokens

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.4865

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amplyfi/gte-small_all-labels_multilabel")
# Run inference
preds = model("LATAM Unveils New Dreamliner Economy Cabin Design")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 9.9616 30

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 5
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.3005 -
0.0903 50 0.2933 -
0.1805 100 0.2219 -
0.2708 150 0.1568 -
0.3610 200 0.1334 -
0.4513 250 0.1204 -
0.5415 300 0.1215 -
0.6318 350 0.1154 -
0.7220 400 0.1065 -
0.8123 450 0.0935 -
0.9025 500 0.0892 -
0.9928 550 0.0807 -
1.0830 600 0.0776 -
1.1733 650 0.0716 -
1.2635 700 0.06 -
1.3538 750 0.0677 -
1.4440 800 0.0607 -
1.5343 850 0.065 -
1.6245 900 0.0593 -
1.7148 950 0.0622 -
1.8051 1000 0.064 -
1.8953 1050 0.0624 -
1.9856 1100 0.0667 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu124
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for amplyfi/gte-small_all-labels_multilabel

Base model

thenlper/gte-small
Finetuned
(8)
this model

Evaluation results