amritpuhan's picture
Update README.md
190c9d3 verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0
metrics:
  - accuracy
model-index:
  - name: fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-swag-peft
    results: []
datasets:
  - allenai/swag

fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-swag-peft

This model is a fine-tuned version of MoritzLaurer/deberta-v3-large-zeroshot-v2.0 on SWAG dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2169
  • Accuracy: 0.9193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5756 1.0 4597 0.2941 0.8993
0.5186 2.0 9194 0.2538 0.9115
0.5139 3.0 13791 0.2399 0.9136
0.4933 4.0 18388 0.2282 0.9158
0.4786 5.0 22985 0.2278 0.9165
0.4657 6.0 27582 0.2215 0.9182
0.4685 7.0 32179 0.2199 0.9189
0.4631 8.0 36776 0.2188 0.9188
0.4629 9.0 41373 0.2186 0.9188
0.4556 10.0 45970 0.2169 0.9193

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1