File size: 2,020 Bytes
32bd1ac f63090e 32bd1ac f63090e 32bd1ac f63090e 32bd1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: bert-base-uncased
datasets:
- swag
metrics:
- accuracy
model-index:
- name: fine-tuned-bert-base-uncased-swag-peft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-bert-base-uncased-swag-peft
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6557
- Accuracy: 0.7483
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0316 | 1.0 | 1150 | 0.8202 | 0.6860 |
| 0.9261 | 2.0 | 2300 | 0.7423 | 0.7144 |
| 0.8862 | 3.0 | 3450 | 0.7114 | 0.7268 |
| 0.8612 | 4.0 | 4600 | 0.6924 | 0.7347 |
| 0.8637 | 5.0 | 5750 | 0.6819 | 0.7393 |
| 0.8541 | 6.0 | 6900 | 0.6691 | 0.7441 |
| 0.8369 | 7.0 | 8050 | 0.6635 | 0.7464 |
| 0.8349 | 8.0 | 9200 | 0.6591 | 0.7475 |
| 0.8302 | 9.0 | 10350 | 0.6572 | 0.7483 |
| 0.8333 | 10.0 | 11500 | 0.6557 | 0.7483 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |