metadata
license: llama3
base_model: TIGER-Lab/Mantis-8B-siglip-llama3-pretraind
tags:
- generated_from_trainer
model-index:
- name: llava_siglip_llama3_8b_finetune_universal_iter_60k_8192
results: []
llava_siglip_llama3_8b_finetune_universal_iter_60k_8192
This model is a fine-tuned version of TIGER-Lab/Mantis-8B-siglip-llama3-pretraind on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 18
- total_train_batch_size: 126
- total_eval_batch_size: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
Training results
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1