SpanMarker

This is a SpanMarker model that can be used for Named Entity Recognition.

Model Details

Model Description

  • Model Type: SpanMarker
  • Maximum Sequence Length: 512 tokens
  • Maximum Entity Length: 8 words

Model Sources

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the ๐Ÿค— Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("None")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the ๐Ÿค— Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Framework Versions

  • Python: 3.10.9
  • SpanMarker: 1.5.0
  • Transformers: 4.36.2
  • PyTorch: 2.1.2+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
17
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.