bdc2024-indobart-gpt-aug

This model is a fine-tuned version of indobenchmark/indobart on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4480
  • Accuracy: 0.9273
  • Balanced Accuracy: 0.8560
  • Precision: 0.9296
  • Recall: 0.9273
  • F1: 0.9205

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced Accuracy Precision Recall F1
No log 1.0 483 0.7053 0.7820 0.5122 0.7407 0.7820 0.7499
0.8051 2.0 966 0.5075 0.8757 0.6954 0.8779 0.8757 0.8622
0.4597 3.0 1449 0.4041 0.9197 0.8361 0.9198 0.9197 0.9122
0.2475 4.0 1932 0.4224 0.9254 0.8626 0.9255 0.9254 0.9202
0.1303 5.0 2415 0.4438 0.9273 0.8559 0.9295 0.9273 0.9214
0.0771 6.0 2898 0.4480 0.9273 0.8560 0.9296 0.9273 0.9205

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.13.3
Downloads last month
174
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for andrianangg/bdc2024-indobart-gpt-aug

Finetuned
(2)
this model