andricValdez's picture
End of training
6e094a1 verified
---
license: mit
base_model: intfloat/multilingual-e5-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: multilingual-e5-large-finetuned-autext24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-e5-large-finetuned-autext24
This model is a fine-tuned version of [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2096
- Accuracy: 0.9673
- F1: 0.9673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 4798 | 0.1903 | 0.9527 | 0.9526 |
| 0.1396 | 2.0 | 9596 | 0.1751 | 0.9672 | 0.9672 |
| 0.1396 | 3.0 | 14394 | 0.2093 | 0.9647 | 0.9646 |
| 0.0391 | 4.0 | 19192 | 0.1954 | 0.9690 | 0.9690 |
| 0.0391 | 5.0 | 23990 | 0.2096 | 0.9673 | 0.9673 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1