|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3503 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: jinaai/jina-embeddings-v3 |
|
widget: |
|
- source_sentence: '###Question###:Factorising into a Double Bracket-Factorise a quadratic |
|
expression in the form x² + bx - c-If |
|
|
|
\( |
|
|
|
m^{2}+5 m-14 \equiv(m+a)(m+b) |
|
|
|
\) |
|
|
|
then \( a \times b= \) |
|
|
|
###Correct Answer###:\( -14 \) |
|
|
|
###Misconcepted Incorrect answer###:\( 5 \)' |
|
sentences: |
|
- Does not know that units of volume are usually cubed |
|
- Believes the coefficent of x in an expanded quadratic comes from multiplying the |
|
two numbers in the brackets |
|
- Does not copy a given method accurately |
|
- source_sentence: '###Question###:Rounding to the Nearest Whole (10, 100, etc)-Round |
|
non-integers to the nearest 10-What is \( \mathbf{8 6 9 8 . 9} \) rounded to the |
|
nearest ten? |
|
|
|
###Correct Answer###:\( 8700 \) |
|
|
|
###Misconcepted Incorrect answer###:\( 8699 \)' |
|
sentences: |
|
- Rounds to the wrong degree of accuracy (rounds too much) |
|
- 'Believes division is commutative ' |
|
- Believes that a number divided by itself equals 0 |
|
- source_sentence: '###Question###:Simultaneous Equations-Solve linear simultaneous |
|
equations requiring a scaling of both expressions-If five cups of tea and two |
|
cups of coffee cost \( £ 3.70 \), and two cups of tea and five cups of coffee |
|
cost \( £ 4.00 \), what is the cost of a cup of tea and a cup of coffee? |
|
|
|
###Correct Answer###:Tea \( =50 \mathrm{p} \) coffee \( =60 p \) |
|
|
|
###Misconcepted Incorrect answer###:\( \begin{array}{l}\text { Tea }=0.5 \\ \text |
|
{ coffee }=0.6\end{array} \)' |
|
sentences: |
|
- Misinterprets the meaning of angles on a straight line angle fact |
|
- Does not include units in answer. |
|
- Believes midpoint calculation is just half of the difference |
|
- source_sentence: '###Question###:Quadratic Sequences-Find the nth term rule for |
|
ascending quadratic sequences in the form ax² + bx + c-\( |
|
|
|
6,14,28,48,74, \ldots |
|
|
|
\) |
|
|
|
|
|
When calculating the nth-term rule of this sequence, what should replace the triangle? |
|
|
|
|
|
nth-term rule: \( 3 n^{2} \)\( \color{red}\triangle \) \(n\) \( \color{purple}\square |
|
\) |
|
|
|
|
|
###Correct Answer###:\( -1 \) |
|
|
|
(or just a - sign) |
|
|
|
###Misconcepted Incorrect answer###:\[ |
|
|
|
+1 |
|
|
|
\] |
|
|
|
(or just a + sign)' |
|
sentences: |
|
- 'When finding the differences between terms in a sequence, believes they can do |
|
so from right to left ' |
|
- When solving an equation forgets to eliminate the coefficient in front of the |
|
variable in the last step |
|
- Believes parallelogram is the term used to describe two lines at right angles |
|
- source_sentence: '###Question###:Written Multiplication-Multiply 2 digit integers |
|
by 2 digit integers using long multiplication-Which working out is correct for |
|
$72 \times 36$? |
|
|
|
###Correct Answer###:![ Long multiplication for 72 multiplied by 36 with correct |
|
working and correct final answer. First row of working is correct: 4 3 2. Second |
|
row of working is correct: 2 1 6 0. Final answer is correct: 2 5 9 2.]() |
|
|
|
###Misconcepted Incorrect answer###:![ Long multiplication for 72 multiplied by |
|
36 with incorrect working and incorrect final answer. First row of working is |
|
incorrect: 4 2 2. Second row of working is incorrect: 2 7. Final answer is incorrect: |
|
4 4 9.]()' |
|
sentences: |
|
- When solving an equation forgets to eliminate the coefficient in front of the |
|
variable in the last step |
|
- Thinks a variable next to a number means addition rather than multiplication |
|
- When two digits multiply to 10 or more during a multiplication problem, does not |
|
add carried value to the preceding digit |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on jinaai/jina-embeddings-v3 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 62a81741b58448ed8f691764cec7aa5d3c045e4c --> |
|
- **Maximum Sequence Length:** 8194 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(transformer): Transformer( |
|
(auto_model): XLMRobertaLoRA( |
|
(roberta): XLMRobertaModel( |
|
(embeddings): XLMRobertaEmbeddings( |
|
(word_embeddings): ParametrizedEmbedding( |
|
250002, 1024, padding_idx=1 |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
(token_type_embeddings): ParametrizedEmbedding( |
|
1, 1024 |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
) |
|
(emb_drop): Dropout(p=0.1, inplace=False) |
|
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) |
|
(encoder): XLMRobertaEncoder( |
|
(layers): ModuleList( |
|
(0-23): 24 x Block( |
|
(mixer): MHA( |
|
(rotary_emb): RotaryEmbedding() |
|
(Wqkv): ParametrizedLinearResidual( |
|
in_features=1024, out_features=3072, bias=True |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
(inner_attn): FlashSelfAttention( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
) |
|
(inner_cross_attn): FlashCrossAttention( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
) |
|
(out_proj): ParametrizedLinear( |
|
in_features=1024, out_features=1024, bias=True |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
) |
|
(dropout1): Dropout(p=0.1, inplace=False) |
|
(drop_path1): StochasticDepth(p=0.0, mode=row) |
|
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) |
|
(mlp): Mlp( |
|
(fc1): ParametrizedLinear( |
|
in_features=1024, out_features=4096, bias=True |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
(fc2): ParametrizedLinear( |
|
in_features=4096, out_features=1024, bias=True |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
) |
|
(dropout2): Dropout(p=0.1, inplace=False) |
|
(drop_path2): StochasticDepth(p=0.0, mode=row) |
|
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
) |
|
(pooler): XLMRobertaPooler( |
|
(dense): ParametrizedLinear( |
|
in_features=1024, out_features=1024, bias=True |
|
(parametrizations): ModuleDict( |
|
(weight): ParametrizationList( |
|
(0): LoRAParametrization() |
|
) |
|
) |
|
) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
) |
|
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(normalizer): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'###Question###:Written Multiplication-Multiply 2 digit integers by 2 digit integers using long multiplication-Which working out is correct for $72 \\times 36$?\n###Correct Answer###:![ Long multiplication for 72 multiplied by 36 with correct working and correct final answer. First row of working is correct: 4 3 2. Second row of working is correct: 2 1 6 0. Final answer is correct: 2 5 9 2.]()\n###Misconcepted Incorrect answer###:![ Long multiplication for 72 multiplied by 36 with incorrect working and incorrect final answer. First row of working is incorrect: 4 2 2. Second row of working is incorrect: 2 7. Final answer is incorrect: 4 4 9.]()', |
|
'When two digits multiply to 10 or more during a multiplication problem, does not add carried value to the preceding digit', |
|
'Thinks a variable next to a number means addition rather than multiplication', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 3,503 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 59 tokens</li><li>mean: 131.26 tokens</li><li>max: 449 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.43 tokens</li><li>max: 46 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------| |
|
| <code>###Question###:Area of Simple Shapes-Calculate the area of a parallelogram where the dimensions are given in the same units-What is the area of this shape? ![A parallelogram drawn on a square grid in purple with an area of 9 square units. The base is length 3 squares and the perpendicular height is also length 3 squares.]()<br>###Correct Answer###:\( 9 \)<br>###Misconcepted Incorrect answer###:\( 12 \)</code> | <code>Counts half-squares as full squares when calculating area on a square grid</code> | |
|
| <code>###Question###:Substitution into Formula-Substitute into simple formulae given in words-A theme park charges \( £ 8 \) entry fee and then \( £ 3 \) for every ride you go on.<br>Heena goes on \( 5 \) rides.<br>How much does she pay in total?<br>###Correct Answer###:\( £ 23 \)<br>###Misconcepted Incorrect answer###:\( £ 55 \)</code> | <code>Combines variables with constants when writing a formula from a given situation</code> | |
|
| <code>###Question###:Trial and Improvement and Iterative Methods-Use area to write algebraic expressions-The area of the rectangle on the right is \( 8 \mathrm{~cm}^{2} \).<br><br>Which of the following equations can we write from the information given? ![A rectangle with the short side labelled \(x\) and the opposite side labelled \(x^2 + 9\).]()<br>###Correct Answer###:\( x^{3}+9 x=8 \)<br>###Misconcepted Incorrect answer###:\( x^{3}+9=8 \)</code> | <code>Only multiplies the first term in the expansion of a bracket</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `num_train_epochs`: 10 |
|
- `push_to_hub`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 1.1416 | 500 | 0.3244 | |
|
| 2.2831 | 1000 | 0.1048 | |
|
| 3.4247 | 1500 | 0.0394 | |
|
| 4.5662 | 2000 | 0.0211 | |
|
| 5.7078 | 2500 | 0.0145 | |
|
| 6.8493 | 3000 | 0.0114 | |
|
| 7.9909 | 3500 | 0.0106 | |
|
| 9.1324 | 4000 | 0.0092 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.45.2 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |