File size: 1,411 Bytes
09259e6
 
 
 
 
 
 
 
 
 
 
 
 
 
75a8fcf
 
e3aa6c8
2e751e0
 
 
c7a856c
2e751e0
c7a856c
2e751e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a856c
2e751e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apache-2.0
datasets:
- b-mc2/sql-create-context
- Clinton/Text-to-sql-v1
language:
- en
base_model:
- cssupport/t5-small-awesome-text-to-sql
- google-t5/t5-small
pipeline_tag: text2text-generation
tags:
- text2sql
- sql
metrics:
- accuracy
- character
library_name: transformers
---

# Industry standard text to sql generation with high accuracy. 

Sample code to begin with:

import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard')
model = model.to(device)
model.eval()

def generate_sql(input_prompt):
    # Tokenize the input prompt
    inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device)

    # Forward pass
    with torch.no_grad():
        outputs = model.generate(**inputs, max_length=512)

    # Decode the output IDs to a string (SQL query in this case)
    generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return generated_sql


input_prompt = "provide count of students where class = 10"

generated_sql = generate_sql(input_prompt)

print(f"The generated SQL query is: {generated_sql}")
#expected output - SELECT COUNT(*) FROM students WHERE class = 10