anirudhmu's picture
Model save
5e6b263
|
raw
history blame
3.46 kB
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-soccer-action-recognitionx
    results: []

videomae-base-finetuned-soccer-action-recognitionx

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2575
  • Accuracy: 0.9281

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1376

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.03 43 1.8151 0.3661
1.7589 1.03 86 0.9133 0.6915
1.7589 2.03 129 0.5026 0.7966
0.5494 3.03 172 0.3937 0.8678
0.5494 4.03 215 0.3943 0.8678
0.2747 5.03 258 0.3876 0.8678
0.2747 6.03 301 0.2803 0.9085
0.1731 7.03 345 0.2414 0.9119
0.1731 8.03 388 0.2434 0.9288
0.1165 9.03 431 0.1560 0.9458
0.1165 10.03 474 0.1894 0.9254
0.07 11.03 517 0.2401 0.9153
0.0417 12.03 560 0.1883 0.9390
0.0417 13.03 603 0.2589 0.9051
0.0362 14.03 646 0.2125 0.9492
0.0362 15.03 690 0.2228 0.9390
0.0348 16.03 733 0.1797 0.9525
0.0348 17.03 776 0.1728 0.9390
0.0129 18.03 819 0.2253 0.9254
0.0129 19.03 862 0.1983 0.9356
0.0112 20.03 905 0.2821 0.9220
0.0112 21.03 948 0.2527 0.9356
0.0165 22.03 991 0.2598 0.9288
0.0165 23.03 1035 0.2690 0.9288
0.0056 24.03 1078 0.2817 0.9220
0.0026 25.03 1121 0.2039 0.9424
0.0026 26.03 1164 0.2164 0.9458
0.0033 27.03 1207 0.2063 0.9424
0.0033 28.03 1250 0.1836 0.9525
0.0038 29.03 1293 0.1899 0.9458
0.0038 30.03 1336 0.1815 0.9492
0.0024 31.03 1376 0.1816 0.9525

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1