BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("anishareddyalla/bge-base-financial-matryoshka-anisha")
# Run inference
sentences = [
"In 1983, Walmart opened its first Sam's Club, and in 1988, it opened its first supercenter.",
"When did Walmart open its first Sam's Club and supercenter?",
'Which standards and guidelines does the company use for informing its sustainability disclosures?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.8371 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9186 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.279 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0919 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.8371 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9186 |
cosine_ndcg@10 | 0.812 |
cosine_mrr@10 | 0.7777 |
cosine_map@100 | 0.781 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.8329 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9243 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.2776 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0924 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.8329 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9243 |
cosine_ndcg@10 | 0.8105 |
cosine_mrr@10 | 0.7743 |
cosine_map@100 | 0.7771 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6943 |
cosine_accuracy@3 | 0.8271 |
cosine_accuracy@5 | 0.8586 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.6943 |
cosine_precision@3 | 0.2757 |
cosine_precision@5 | 0.1717 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.6943 |
cosine_recall@3 | 0.8271 |
cosine_recall@5 | 0.8586 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.8026 |
cosine_mrr@10 | 0.7687 |
cosine_map@100 | 0.7726 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6886 |
cosine_accuracy@3 | 0.8157 |
cosine_accuracy@5 | 0.8571 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6886 |
cosine_precision@3 | 0.2719 |
cosine_precision@5 | 0.1714 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6886 |
cosine_recall@3 | 0.8157 |
cosine_recall@5 | 0.8571 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.7973 |
cosine_mrr@10 | 0.7622 |
cosine_map@100 | 0.7657 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.66 |
cosine_accuracy@3 | 0.7986 |
cosine_accuracy@5 | 0.8357 |
cosine_accuracy@10 | 0.8829 |
cosine_precision@1 | 0.66 |
cosine_precision@3 | 0.2662 |
cosine_precision@5 | 0.1671 |
cosine_precision@10 | 0.0883 |
cosine_recall@1 | 0.66 |
cosine_recall@3 | 0.7986 |
cosine_recall@5 | 0.8357 |
cosine_recall@10 | 0.8829 |
cosine_ndcg@10 | 0.7716 |
cosine_mrr@10 | 0.7361 |
cosine_map@100 | 0.7401 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.43 tokens
- max: 439 tokens
- min: 8 tokens
- mean: 20.76 tokens
- max: 43 tokens
- Samples:
positive anchor The Company’s human capital management strategy is built on three fundamental focus areas: Attracting and recruiting the best talent, Developing and retaining talent, Empowering and inspiring talent.
What strategies are outlined in the Company's human capital management?
Opinion on the Consolidated Financial Statements We have audited the accompanying consolidated balance sheets of Costco Wholesale Corporation and subsidiaries (the Company) as of September 3, 2023, and August 28, 2022, the related consolidated statements of income, comprehensive income, equity, and cash flows for the 53-week period ended September 3, 2023, and the 52-week periods ended August 28, 2022, and August 29, 2021, and the related notes (collectively, the consolidated financial statements). In our opinion, the consolidated financial statements present fairly, in all material respects, the financial position of the Company as of September 3, 2023, and August 28, 2022, and the results of its operations and its cash flows for each of the 53-week period ended September 3, 2023, and the 52-week periods ended August 28, 2022, and August 29, 2021, in conformity with U.S. generally accepted accounting principles.
What was the opinion of the independent registered public accounting firm on Costco Wholesale Corporation's consolidated financial statements for the year ended September 3, 2023?
Nonperforming loans and leases are generally those that have been placed on nonaccrual status, such as when they are 90 days past due or have confirmed cases of fraud or bankruptcy. Additionally, specific types of loans like consumer real estate-secured loans are classified as nonperforming at 90 days past due unless they are fully insured, and commercial loans and leases are classified as nonperforming when past due 90 days or more unless well-secured and in the process of collection.
What criteria are used to classify loans and leases as nonperforming according to the described credit policy?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5488 | - | - | - | - | - |
0.9746 | 12 | - | 0.7540 | 0.7565 | 0.7660 | 0.7176 | 0.7693 |
1.6244 | 20 | 0.674 | - | - | - | - | - |
1.9492 | 24 | - | 0.7622 | 0.7715 | 0.7781 | 0.7352 | 0.7790 |
2.4365 | 30 | 0.4592 | - | - | - | - | - |
2.9239 | 36 | - | 0.7648 | 0.7729 | 0.7778 | 0.7384 | 0.7799 |
3.2487 | 40 | 0.4113 | - | - | - | - | - |
3.8985 | 48 | - | 0.7657 | 0.7726 | 0.7771 | 0.7401 | 0.7810 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for anishareddyalla/bge-base-financial-matryoshka-anisha
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.703
- Cosine Accuracy@3 on dim 768self-reported0.837
- Cosine Accuracy@5 on dim 768self-reported0.873
- Cosine Accuracy@10 on dim 768self-reported0.919
- Cosine Precision@1 on dim 768self-reported0.703
- Cosine Precision@3 on dim 768self-reported0.279
- Cosine Precision@5 on dim 768self-reported0.175
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.703
- Cosine Recall@3 on dim 768self-reported0.837