|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- f1 |
|
widget: |
|
- text: 'The Democratic Party was totally corrupted by the Clinton Regime, and now |
|
it is totally insane. |
|
|
|
' |
|
- text: 'The media gave scant coverage to Obama’s close relationship with radical |
|
Reverend Jeremiah “God damn America) Wright who blamed the US for 9/11. |
|
|
|
' |
|
- text: 'It’s sharia compliance in New Mexico. |
|
|
|
' |
|
- text: 'Are you people serious? |
|
|
|
' |
|
- text: 'However, I ask, why were you not involved in the first place, Mr. President? |
|
|
|
' |
|
pipeline_tag: text-classification |
|
inference: true |
|
model-index: |
|
- name: SetFit |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.7514450867052023 |
|
name: F1 |
|
--- |
|
|
|
# SetFit |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0.0 | <ul><li>'A Jewish student at McGill University has been kicked off the student government board for having “conflicts of interest” due to his pro-Israel activism.\n'</li><li>'How else to describe the decision by Big Brother USA and junior sidekick South Korea to stage major air force exercises on North Korea’s border.\n'</li><li>'DB: It was hysterical to watch these four armed guards who kept shouting “Stop resisting, stop resisting!” and they are beating the hell out of him!\n'</li></ul> | |
|
| 1.0 | <ul><li>'The UK should never become a stage for inflammatory speakers who promote hate."\n'</li><li>'In a nation guided by fairness and law, a person is innocent until proven guilty.\n'</li><li>'Speaking of Mastercard, the David Horowitz Freedom Center just recently won a major battle with the credit card, defeating well-financed leftwing groups that are trying to run the Center out of business and suffocate free speech in America.\n'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | F1 | |
|
|:--------|:-------| |
|
| **all** | 0.7514 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("anismahmahi/G1-setfit-model") |
|
# Run inference |
|
preds = model("Are you people serious? |
|
") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 26.2775 | 129 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 3919 | |
|
| 1 | 240 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 5 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:--------:|:-------------:|:---------------:| |
|
| 0.0004 | 1 | 0.3542 | - | |
|
| 0.0192 | 50 | 0.2957 | - | |
|
| 0.0385 | 100 | 0.2509 | - | |
|
| 0.0577 | 150 | 0.1691 | - | |
|
| 0.0769 | 200 | 0.2145 | - | |
|
| 0.0962 | 250 | 0.0861 | - | |
|
| 0.1154 | 300 | 0.0677 | - | |
|
| 0.1346 | 350 | 0.0554 | - | |
|
| 0.1538 | 400 | 0.0169 | - | |
|
| 0.1731 | 450 | 0.0621 | - | |
|
| 0.1923 | 500 | 0.0024 | - | |
|
| 0.2115 | 550 | 0.0405 | - | |
|
| 0.2308 | 600 | 0.0724 | - | |
|
| 0.25 | 650 | 0.0557 | - | |
|
| 0.2692 | 700 | 0.0007 | - | |
|
| 0.2885 | 750 | 0.0011 | - | |
|
| 0.3077 | 800 | 0.0005 | - | |
|
| 0.3269 | 850 | 0.0103 | - | |
|
| 0.3462 | 900 | 0.0618 | - | |
|
| 0.3654 | 950 | 0.0003 | - | |
|
| 0.3846 | 1000 | 0.0046 | - | |
|
| 0.4038 | 1050 | 0.0006 | - | |
|
| 0.4231 | 1100 | 0.0003 | - | |
|
| 0.4423 | 1150 | 0.0004 | - | |
|
| 0.4615 | 1200 | 0.0006 | - | |
|
| 0.4808 | 1250 | 0.0002 | - | |
|
| 0.5 | 1300 | 0.0001 | - | |
|
| 0.5192 | 1350 | 0.0002 | - | |
|
| 0.5385 | 1400 | 0.0003 | - | |
|
| 0.5577 | 1450 | 0.0002 | - | |
|
| 0.5769 | 1500 | 0.0002 | - | |
|
| 0.5962 | 1550 | 0.0003 | - | |
|
| 0.6154 | 1600 | 0.0001 | - | |
|
| 0.6346 | 1650 | 0.0067 | - | |
|
| 0.6538 | 1700 | 0.0003 | - | |
|
| 0.6731 | 1750 | 0.0001 | - | |
|
| 0.6923 | 1800 | 0.0003 | - | |
|
| 0.7115 | 1850 | 0.0001 | - | |
|
| 0.7308 | 1900 | 0.0001 | - | |
|
| 0.75 | 1950 | 0.0006 | - | |
|
| 0.7692 | 2000 | 0.0001 | - | |
|
| 0.7885 | 2050 | 0.0001 | - | |
|
| 0.8077 | 2100 | 0.0 | - | |
|
| 0.8269 | 2150 | 0.0 | - | |
|
| 0.8462 | 2200 | 0.0 | - | |
|
| 0.8654 | 2250 | 0.0 | - | |
|
| 0.8846 | 2300 | 0.0002 | - | |
|
| 0.9038 | 2350 | 0.0001 | - | |
|
| 0.9231 | 2400 | 0.0001 | - | |
|
| 0.9423 | 2450 | 0.0003 | - | |
|
| 0.9615 | 2500 | 0.0001 | - | |
|
| 0.9808 | 2550 | 0.0005 | - | |
|
| 1.0 | 2600 | 0.0 | 0.1875 | |
|
| 1.0192 | 2650 | 0.0 | - | |
|
| 1.0385 | 2700 | 0.0003 | - | |
|
| 1.0577 | 2750 | 0.0 | - | |
|
| 1.0769 | 2800 | 0.0001 | - | |
|
| 1.0962 | 2850 | 0.0472 | - | |
|
| 1.1154 | 2900 | 0.0 | - | |
|
| 1.1346 | 2950 | 0.0 | - | |
|
| 1.1538 | 3000 | 0.0001 | - | |
|
| 1.1731 | 3050 | 0.0001 | - | |
|
| 1.1923 | 3100 | 0.0 | - | |
|
| 1.2115 | 3150 | 0.0003 | - | |
|
| 1.2308 | 3200 | 0.0 | - | |
|
| 1.25 | 3250 | 0.0 | - | |
|
| 1.2692 | 3300 | 0.0245 | - | |
|
| 1.2885 | 3350 | 0.0 | - | |
|
| 1.3077 | 3400 | 0.0 | - | |
|
| 1.3269 | 3450 | 0.0 | - | |
|
| 1.3462 | 3500 | 0.0001 | - | |
|
| 1.3654 | 3550 | 0.0 | - | |
|
| 1.3846 | 3600 | 0.0 | - | |
|
| 1.4038 | 3650 | 0.0 | - | |
|
| 1.4231 | 3700 | 0.0 | - | |
|
| 1.4423 | 3750 | 0.0 | - | |
|
| 1.4615 | 3800 | 0.0 | - | |
|
| 1.4808 | 3850 | 0.0 | - | |
|
| 1.5 | 3900 | 0.0 | - | |
|
| 1.5192 | 3950 | 0.0 | - | |
|
| 1.5385 | 4000 | 0.0 | - | |
|
| 1.5577 | 4050 | 0.0 | - | |
|
| 1.5769 | 4100 | 0.0 | - | |
|
| 1.5962 | 4150 | 0.0 | - | |
|
| 1.6154 | 4200 | 0.0 | - | |
|
| 1.6346 | 4250 | 0.0001 | - | |
|
| 1.6538 | 4300 | 0.0 | - | |
|
| 1.6731 | 4350 | 0.0 | - | |
|
| 1.6923 | 4400 | 0.0 | - | |
|
| 1.7115 | 4450 | 0.0 | - | |
|
| 1.7308 | 4500 | 0.0 | - | |
|
| 1.75 | 4550 | 0.0 | - | |
|
| 1.7692 | 4600 | 0.0 | - | |
|
| 1.7885 | 4650 | 0.0 | - | |
|
| 1.8077 | 4700 | 0.0 | - | |
|
| 1.8269 | 4750 | 0.0 | - | |
|
| 1.8462 | 4800 | 0.0001 | - | |
|
| 1.8654 | 4850 | 0.0 | - | |
|
| 1.8846 | 4900 | 0.0 | - | |
|
| 1.9038 | 4950 | 0.0 | - | |
|
| 1.9231 | 5000 | 0.0 | - | |
|
| 1.9423 | 5050 | 0.0 | - | |
|
| 1.9615 | 5100 | 0.0 | - | |
|
| 1.9808 | 5150 | 0.0 | - | |
|
| **2.0** | **5200** | **0.0** | **0.1393** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.16.1 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |