metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: |
It was a jihad training camp.
- text: >
Batten echoed that sentiment saying, “Tommy Robinson is a political
prisoner."
- text: >
Failing to answer, Ellison tried to move from person to person, allowing
his minions to try and provide cover for him, similar to that of Maxine
Waters, but there was no "member's only" elevator to flee into.
- text: >
More details about the horrid compound could be revealed Wednesday when
the five adults arrested from the site make their first court appearances.
- text: |
Black Death Warning: The Plague Is Impossible To Eradicate
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5849056603773585
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5849 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G2-multilabel-setfit-model")
# Run inference
preds = model("It was a jihad training camp.
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 26.6518 | 129 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.3905 | - |
0.0275 | 50 | 0.2239 | - |
0.0550 | 100 | 0.2359 | - |
0.0826 | 150 | 0.2443 | - |
0.1101 | 200 | 0.2495 | - |
0.1376 | 250 | 0.2498 | - |
0.1651 | 300 | 0.116 | - |
0.1926 | 350 | 0.1672 | - |
0.2201 | 400 | 0.1281 | - |
0.2477 | 450 | 0.139 | - |
0.2752 | 500 | 0.0615 | - |
0.3027 | 550 | 0.0972 | - |
0.3302 | 600 | 0.0851 | - |
0.3577 | 650 | 0.1769 | - |
0.3853 | 700 | 0.1673 | - |
0.4128 | 750 | 0.0615 | - |
0.4403 | 800 | 0.1232 | - |
0.4678 | 850 | 0.0094 | - |
0.4953 | 900 | 0.0135 | - |
0.5228 | 950 | 0.0107 | - |
0.5504 | 1000 | 0.1137 | - |
0.5779 | 1050 | 0.0173 | - |
0.6054 | 1100 | 0.0573 | - |
0.6329 | 1150 | 0.0115 | - |
0.6604 | 1200 | 0.0374 | - |
0.6879 | 1250 | 0.0231 | - |
0.7155 | 1300 | 0.0392 | - |
0.7430 | 1350 | 0.0754 | - |
0.7705 | 1400 | 0.007 | - |
0.7980 | 1450 | 0.0138 | - |
0.8255 | 1500 | 0.0569 | - |
0.8531 | 1550 | 0.0971 | - |
0.8806 | 1600 | 0.1052 | - |
0.9081 | 1650 | 0.0084 | - |
0.9356 | 1700 | 0.0859 | - |
0.9631 | 1750 | 0.0081 | - |
0.9906 | 1800 | 0.0362 | - |
1.0 | 1817 | - | 0.2354 |
1.0182 | 1850 | 0.0429 | - |
1.0457 | 1900 | 0.056 | - |
1.0732 | 1950 | 0.0098 | - |
1.1007 | 2000 | 0.002 | - |
1.1282 | 2050 | 0.0892 | - |
1.1558 | 2100 | 0.0557 | - |
1.1833 | 2150 | 0.001 | - |
1.2108 | 2200 | 0.0125 | - |
1.2383 | 2250 | 0.0152 | - |
1.2658 | 2300 | 0.0202 | - |
1.2933 | 2350 | 0.0593 | - |
1.3209 | 2400 | 0.007 | - |
1.3484 | 2450 | 0.014 | - |
1.3759 | 2500 | 0.003 | - |
1.4034 | 2550 | 0.0012 | - |
1.4309 | 2600 | 0.0139 | - |
1.4584 | 2650 | 0.0149 | - |
1.4860 | 2700 | 0.002 | - |
1.5135 | 2750 | 0.009 | - |
1.5410 | 2800 | 0.0066 | - |
1.5685 | 2850 | 0.0173 | - |
1.5960 | 2900 | 0.0052 | - |
1.6236 | 2950 | 0.0039 | - |
1.6511 | 3000 | 0.0042 | - |
1.6786 | 3050 | 0.0339 | - |
1.7061 | 3100 | 0.001 | - |
1.7336 | 3150 | 0.0005 | - |
1.7611 | 3200 | 0.0049 | - |
1.7887 | 3250 | 0.01 | - |
1.8162 | 3300 | 0.0815 | - |
1.8437 | 3350 | 0.0227 | - |
1.8712 | 3400 | 0.005 | - |
1.8987 | 3450 | 0.0053 | - |
1.9263 | 3500 | 0.0152 | - |
1.9538 | 3550 | 0.0155 | - |
1.9813 | 3600 | 0.0182 | - |
2.0 | 3634 | - | 0.2266 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}