|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: sshleifer/distilbart-cnn-12-6 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: distilbart-cnn-12-6-finetuned-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 41.0557 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-cnn-12-6-finetuned-samsum |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5040 |
|
- Rouge1: 41.0557 |
|
- Rouge2: 20.8627 |
|
- Rougel: 31.6375 |
|
- Rougelsum: 38.3023 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.5843 | 1.0 | 921 | 0.5095 | 40.4545 | 21.2232 | 31.2992 | 37.9698 | |
|
| 0.4562 | 2.0 | 1842 | 0.5010 | 40.9057 | 21.0576 | 31.4701 | 38.2105 | |
|
| 0.3938 | 3.0 | 2763 | 0.5040 | 41.0557 | 20.8627 | 31.6375 | 38.3023 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|