nosql-identifier-bert

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1785
  • Accuracy: 0.975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 0.5065 0.9
No log 2.0 80 0.1797 0.975
No log 3.0 120 0.3728 0.8
No log 4.0 160 0.1881 0.925
No log 5.0 200 0.1524 0.95
No log 6.0 240 0.1662 0.9
No log 7.0 280 0.2983 0.9
No log 8.0 320 0.1435 0.975
No log 9.0 360 0.1648 0.975
No log 10.0 400 0.1821 0.975
No log 11.0 440 0.3313 0.95
No log 12.0 480 0.2157 0.95
0.2728 13.0 520 0.3267 0.95
0.2728 14.0 560 0.1715 0.975
0.2728 15.0 600 0.1850 0.975
0.2728 16.0 640 0.2443 0.95
0.2728 17.0 680 0.1755 0.975
0.2728 18.0 720 0.1747 0.975
0.2728 19.0 760 0.1763 0.975
0.2728 20.0 800 0.1785 0.975

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.11.0
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ankush-003/nosql-identifier-bert

Finetuned
(2385)
this model