Upload PPo MOdel
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +28 -28
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 269.16 +/- 15.40
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be92e946200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be92e946290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be92e946320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be92e9463b0>", "_build": "<function ActorCriticPolicy._build at 0x7be92e946440>", "forward": "<function ActorCriticPolicy.forward at 0x7be92e9464d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be92e946560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be92e9465f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7be92e946680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be92e946710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be92e9467a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be92e946830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be92e8e50c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722166086627420687, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNa77zrzx8/rocfvJJceL6ruwg7OMZCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9f1VghKUWMAWyUTTEBjAF0lEdAm/rl3hXKbXV9lChoBkdAbWH5v99+gGgHTSwBaAhHQJv8szzmOlx1fZQoaAZHQG771baAWi1oB01jAWgIR0Cb/rAeq7yydX2UKGgGR0BiyHjIaLn+aAdN6ANoCEdAnAXtOVPepHV9lChoBkdAN8DfzjFQ22gHS/VoCEdAnAeuIInjQ3V9lChoBkdAcgA03fhuO2gHTQwCaAhHQJwNjYqXnhd1fZQoaAZHQG54FOoHcDdoB014AWgIR0CcD9gkTpPidX2UKGgGR0BuCC5byH2zaAdNcAFoCEdAnBMdcGC7LHV9lChoBkdARIHu3MINVmgHTQEBaAhHQJwUkGGEf1Z1fZQoaAZHQG92cQiA2AJoB01GAWgIR0CcFnLzf779dX2UKGgGR0BvBY73fyf+aAdNgQFoCEdAnBnLqQiiZnV9lChoBkfADNOPeYUnHGgHS71oCEdAnBriVObiInV9lChoBkdAb6tWRRuTA2gHTTYBaAhHQJwcoJb+tKZ1fZQoaAZHQEFSX7+DOC5oB00QAWgIR0CcHip7TlT4dX2UKGgGR0Ak6JD3M6ikaAdL+2gIR0CcIL3VCojwdX2UKGgGR0BwqkJv5xioaAdNIwFoCEdAnCJku6ErXnV9lChoBkdARHi8jAzpHWgHS+BoCEdAnCOk9dNWVHV9lChoBkdAUJua/h2nsWgHS/BoCEdAnCT4IOYplXV9lChoBkdAcO5LeyiVSmgHTVYBaAhHQJwoHL1VYIV1fZQoaAZHQG4RIwVTJhhoB01YAWgIR0CcKgkE9t/GdX2UKGgGR0Bvai94/u9faAdNWgFoCEdAnCvsy31BdHV9lChoBkdAcsBiS7oStmgHTT4BaAhHQJwu5hYvFm51fZQoaAZHQHMK15rxiG5oB00gAWgIR0CcMIOvt+kQdX2UKGgGR0BwVimfoRqXaAdNTQFoCEdAnDJrj5sTFnV9lChoBkdASje3pfQa72gHS9doCEdAnDOgYYR/VnV9lChoBkdAb8kv38GcF2gHTTgBaAhHQJw2yuHN5dJ1fZQoaAZHQHD63nQpnYhoB011AWgIR0CcOYpfhMrVdX2UKGgGR0BwNTSa3I+4aAdNUAFoCEdAnDwf/echDHV9lChoBkdAaup6QeV9nmgHTUwBaAhHQJxAbmEGqxV1fZQoaAZHQHCftFfAsTZoB00xAWgIR0CcQoQhOgxrdX2UKGgGR0BLM5Gax5cDaAdL/mgIR0CcQ/mZVn27dX2UKGgGR0BuYVeQdS2qaAdNQwFoCEdAnEb/qX4TK3V9lChoBkdAcKXAiV0LdGgHTWYBaAhHQJxJAwg1WKd1fZQoaAZHQFKaOaOPvKFoB0vRaAhHQJxKKrQw9JV1fZQoaAZHQHAEGJaaCtloB03lAWgIR0CcThWEK3NLdX2UKGgGR0BtZZ0+1SflaAdNTQFoCEdAnE//nOjZc3V9lChoBkdAcgU3Dej2z2gHTUwBaAhHQJxR0cGTs6d1fZQoaAZHQFsB8TzundhoB03oA2gIR0CcWMSwW3z+dX2UKGgGR0BvBUx0uDjBaAdNPAFoCEdAnFu6h+OOsHV9lChoBkdAcUJ5eZ5Rj2gHTV8CaAhHQJxfIgW8AaN1fZQoaAZHQHFT0wztTk1oB02yAWgIR0CcYsf/FR51dX2UKGgGR0BwJGSlnAZbaAdNjQFoCEdAnGUC1y/9HnV9lChoBkdAbqBx1gYxcmgHTWgBaAhHQJxnAMNMGot1fZQoaAZHQG/Yh/RVp9JoB00rAWgIR0Ccag5Pdl/ZdX2UKGgGR0BvtkOoYNy6aAdNMAFoCEdAnGxagElme3V9lChoBkdAcM4rfLs8gmgHTRgBaAhHQJxuV5TqB3B1fZQoaAZHQEQSLVnVXmxoB0vsaAhHQJxwPQla8pV1fZQoaAZHQHHEteY2Kl5oB030AWgIR0Ccddwe/5+IdX2UKGgGR0A3Kch1Tzd2aAdL9mgIR0Ccdzf2bobGdX2UKGgGR0BE+5Y5ksjFaAdL8mgIR0CceJhegL7XdX2UKGgGR0BtxEV32VVxaAdNUAFoCEdAnHuhtDUmUnV9lChoBkdAb7EGGEf1YmgHTbgBaAhHQJx+HeLvTgF1fZQoaAZHP8YWgvlEJBxoB0v8aAhHQJx/hwYLsrx1fZQoaAZHQG1jN1ZDArRoB01kAWgIR0Ccgq6QNkOJdX2UKGgGR0Bwy2PcSGrTaAdNFAJoCEdAnIW7vb48EHV9lChoBkdAb7vCtRvWH2gHTToBaAhHQJyIpix3V091fZQoaAZHQENj43WFvhtoB00OAWgIR0CciiD+BH09dX2UKGgGR0ByUt+EytV8aAdNOwFoCEdAnIvffbblBHV9lChoBkdAbrTLeyiVSmgHTTwBaAhHQJyNp06o2n91fZQoaAZHQHBUlTaTOgRoB01dAWgIR0CckNFWn0kGdX2UKGgGR0BxRj/jsD4haAdNKgFoCEdAnJJ7aufVZ3V9lChoBkdAcWiTibUgCGgHTV0BaAhHQJyUcqG1x851fZQoaAZHQHFR4r8R+SdoB00eAWgIR0Ccl0L39JjEdX2UKGgGR0Bs66MWGh24aAdNMAFoCEdAnJj4fnwG4nV9lChoBkdAa68sT37DVGgHTYQBaAhHQJybKGahHsl1fZQoaAZHQG/VUtqYZ2poB01TAWgIR0CcnrASFoL5dX2UKGgGR0ByAIkX1rZbaAdNUgFoCEdAnKEGozeoDXV9lChoBkdAcMl7Q9ic5WgHTToBaAhHQJyjZCv5gw51fZQoaAZHQHFdcoUi6hBoB01EAWgIR0Ccp5rVe8f3dX2UKGgGR0BJVcNH6MzeaAdL+mgIR0CcqV89Oh0ydX2UKGgGR0Bwyue6I3zdaAdNQAFoCEdAnKsxX4j8k3V9lChoBkdAcQynYg7o0WgHTX4BaAhHQJyuohGH58B1fZQoaAZHQHE4331zySVoB01CAWgIR0CcsHmlZX+3dX2UKGgGR0BvFfHaN+9baAdNHwFoCEdAnLIiT+vQnnV9lChoBkdAcHUR6nivPmgHTVEBaAhHQJy0AGX5WR11fZQoaAZHQEc1UI9kjHJoB0vuaAhHQJy2glsxfv51fZQoaAZHQG05/+KjzqdoB01NAWgIR0CcuGde6ZpjdX2UKGgGR0BysBq33HrAaAdN1gFoCEdAnLw3yRSxaHV9lChoBkdAMF6RISUTtmgHS/NoCEdAnL2QNgBtDXV9lChoBkdAEgrVOKwY+GgHS6JoCEdAnL58cZLqU3V9lChoBkdAcIbrBTGYKWgHTZMBaAhHQJzAwOFxn4B1fZQoaAZHQG3gO3+dbxFoB02VAWgIR0CcxD0fozN2dX2UKGgGR0BunLRIBikPaAdNOgFoCEdAnMX3okiUxHV9lChoBkdAa/2NzbN8mmgHTUIBaAhHQJzH279Q40d1fZQoaAZHQG3sTQmeDnNoB01uAWgIR0Ccyx72criEdX2UKGgGR0ByBO7z06HTaAdNTwFoCEdAnMz7NGEwnHV9lChoBkdASlN4xDb8FmgHS+BoCEdAnM45rP+n63V9lChoBkdAcJKLNfPX1GgHTU4BaAhHQJzRkphF3IN1fZQoaAZHQG1jYZuQ6p5oB02eAWgIR0Cc1JNIbwSbdX2UKGgGR0BwYt+8XenAaAdNOgFoCEdAnNcGvW6K+HV9lChoBkdARqddJJ5E+mgHS+loCEdAnNjI4p+c6XV9lChoBkdAcJQuejEehmgHTWQBaAhHQJzcsNnXd0t1fZQoaAZHQHISEKiO/+NoB00dAWgIR0Cc3kb9If8udX2UKGgGR0BtfFZHNHH4aAdNNgFoCEdAnOAA3o9s8HV9lChoBkdAcaiYGt6ol2gHTYABaAhHQJzjWesgdOt1fZQoaAZHQHJp6Tnq3VloB01DAWgIR0Cc5R4m1IAfdX2UKGgGR0Bvt7Io3JgcaAdNjwFoCEdAnOdccU/OdHV9lChoBkdAbrWLHdXT3WgHTVUBaAhHQJzqmwiaAnV1fZQoaAZHQG7coduHerNoB00rAWgIR0Cc7EhjOLR8dX2UKGgGRz//xn8KohpyaAdL/2gIR0Cc7bOmzjWDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRBV2KfUg6UKd7iUXY1/k94wCMA2luY5SKEC/iO4db7tYVa1XfLMgC/WV1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRLAOxv1gw4oWZyulSuXoXjQCMA2luY5SKEBf2OA4O5zWFTfhcSjpzYR51jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKNhmrPXVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3dedb7bd90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3dedb7be20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3dedb7beb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3dedb7bf40>", "_build": "<function ActorCriticPolicy._build at 0x7b3dedb84040>", "forward": "<function ActorCriticPolicy.forward at 0x7b3dedb840d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3dedb84160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3dedb841f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3dedb84280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3dedb84310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3dedb843a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3dedb84430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3dedb27200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2097152, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722168826047465822, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM2QR72PTme6XMK/OwC74TgyJZA6KA1pugAAgD8AAIA/AEfpvMP1azd/YLU666BuNErTobr9RY8zAACAPwAAgD8acQU99ixVujtLSrq+4wq28NYzOva0YzkAAIA/AACAPzMjJbu4pva5DPK8uzJzqjWHpU8626wWtQAAgD8AAIA/AAYAPRTChLqGdCY5kh+vNU+I/zoGwz64AACAPwAAgD+mQME9XMNUulpRG7ox7Ag1HkhCO+H7MzkAAIA/AACAP826Sjx70qa6SpSDuT6X5rXPLYK6QOQlOAAAgD8AAIA/RsdiPl+4QT+qF7E8X+SyvnRCaD46vtu9AAAAAAAAAACamYy87PHxufO+GbrBTqa1upcJO7LiMzkAAIA/AACAP03Klj1cv2q6FsxpvJcl17jRRP66nU5COAAAgD8AAIA/Gn87vVzvdrplNby7euGHuIOipTsw+FI4AACAPwAAgD/mHgM9uCbvueElFLyd0CA3b0iBOtG/lLYAAIA/AACAP83aJrxcG1G6UEnPu1GVAL1HuW84O3fhvQAAAAAAAIA/ANzEu3uSgLrSFs25cr0VObVvVruLScs4AACAPwAAgD8azCm9ewz6upaVFLuJsrO81d4BPGk7nD0AAIA/AACAPwCAu7ppQQY/+hwKvpoSV77wz6K9klOnvQAAAAAAAAAAAG0aPfY4Q7rovWm6OePPNYR1BTttMYY5AACAPwAAgD8AzBS8rn+kOUmtx7xn9D885C5Iu4Pk1DwAAAAAAAAAANo+gz3sGZG58mXnu3DNh7xMwGW6c/FtPQAAgD8AAAAAAINtPbgG/bk+qaK6E9TxtaOQXzsGx705AACAPwAAgD9d/pu+5ut0PwK/lb4hP/S+ZZCuvhNwpTwAAAAAAAAAABr7T70fZYO5yuL0u5fDMbnUf/+70sKlOAAAgD8AAIA/c6mdvSlYUronhxC6/AWuNTWgyTv6SCg5AACAPwAAgD8AQoo8KQgDurYHtTwUQoO3S2PAuhITfLYAAIA/AACAP7NcJj42mzk/ldHkPawzxL6nSD4+ag0rugAAAAAAAAAAgPIXvbjG1rlaWc475CnKO9TIBTzzZLy8AACAPwAAgD8AVQo9NkqvP/e/MD9VR9i+IiskvXTAP74AAAAAAAAAADOav73DPyI7sEx/vocVE776xpK9tOeSPwAAgD8AAAAA812VvVzDJLruYhU7tyQotoh0zbquzC26AACAPwAAgD/tiCg+GT/KPnWmkL4+m6O+fVkFvXgEHj0AAAAAAAAAAGaUHj17CIO6Gu0xvLzdQ7adVms7U4+xNQAAgD8AAIA/c1T1Peq/2j74amG+bOdyvthoTTzR9q29AAAAAAAAAABm3gm9uFbsuSq2pjozFjq008cquLOkxbkAAIA/AACAP4BLGb3DhUa6wNkpNwG6fTWwxoC78JhLtgAAgD8AAIA/GmEYvQ/GKrxLjti6tkapPEQLkb3Jm4o9AACAPwAAgD+zy2A9XMsHuhIKEzy+UQY2FtKCOrLU+TQAAIA/AACAP03007328Ay6MzJqO9Z/hThNqg+7ixUOugAAgD8AAIA/AK56vMMtF7pw9Nm6YK+Jtvoz8js7r/85AACAPwAAgD9NfJW9w3lwulbi3jpbMI81jiOtOkMGdDQAAIA/AACAP8149zxcGyq6VTW6OpV9CDYBPAA6nsLYuQAAgD8AAIA/5o4KvWOaWz9AQuo4qrDeviUJ/L0jQLs5AAAAAAAAAADN3hU9FOKFuoPCdbpiEwW2NJ8eO4b7ijkAAIA/AACAPzPmCj7fu7I+BhdDvjqYm74o1F88C825vQAAAAAAAAAAWmwiPn0ihj42Ujy+t/YivopQNL0eb5K9AAAAAAAAAAAA9Bi8SPekuuwdI7q6mRq2KsPCOU5fOjkAAIA/AACAP2YuTDyu34W6m/qVuXR2JjZ1vPQ6OdWrOAAAgD8AAIA/ZjO7vDs6l7waWKm8E84zPf8xA7y0dhC8AACAPwAAgD/mSQU9ebCeP8/kKT4XygO/kZ5ZPC00DL0AAAAAAAAAAI0Pob3cfUY/9mMqvNDmx75tgpS9ufYMPQAAAAAAAAAA5tpGPY82WLoCco27RmK/OYD8ijqr1wQ6AACAPwAAgD+zhBS9exqSusUo/LpnU608YsK0O9hilb0AAIA/AACAP5plN70UBqe6F0IcuxWni7VP6v066L0xOgAAgD8AAIA/TXqyPcOpf7oG2fK7s5OqOBwmAjq1CeE5AACAPwAAgD+aar884QH5PVlCHr3XG0K+NvcSvU1btjwAAAAAAAAAAM2qhLxIeYC6LuJLO9G06DVbPzK7AtxpugAAgD8AAIA/TSJCvXsaobr21lm4vDPEMbJ4kLog43k3AACAPwAAgD+amqW89nxcunaH5DirETa1qC3nucdeKLQAAIA/AACAP2a8s7wp8F+6oaYRPMtj2rjnecy6Q5fQtwAAgD8AAIA/M1PAPI8mbrpLQ3c7Y8YNOE6sXrriJfW2AACAPwAAgD+aw/q8KZAXukkRm7sBGfa14E3aOnCXXjUAAIA/AACAP2b0Kb0coZ8/sSAGvvBR7b5Mmuy9HVbCvQAAAAAAAAAAml2Au7he8Lnu/BM60e+9tcGXGju0BCq5AACAPwAAgD8w8oE+gfs0P8rYlL2EBce+A8RVPsZxyb0AAAAAAAAAADrnEb6cZhq8EgTWvbf3dLznw409ArhLPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQbpGnXNC+MAWyUTegDjAF0lEdAqaXXPeHi33V9lChoBkdAYin60IC2dGgHTegDaAhHQKmngfHxSYR1fZQoaAZHQGSpqrJbMX9oB03oA2gIR0Cpqrz9sJpndX2UKGgGR0BjU945cTrWaAdN6ANoCEdAqa1RLmITG3V9lChoBkdAX6+F9KEnLWgHTegDaAhHQKmvBvQ4S6F1fZQoaAZHQGJzsenyd4FoB03oA2gIR0CpsipbUwztdX2UKGgGR0BhIIaLn9vTaAdN6ANoCEdAqbZe6ClJpXV9lChoBkdAT/G3DvVmSWgHS61oCEdAqbx4jSofjnV9lChoBkdAZl1XT3IuG2gHTegDaAhHQKm+HyJ9Aop1fZQoaAZHQF0gKFqSHM5oB03oA2gIR0Cpw2vbO/tZdX2UKGgGR0BZn+lwcYIjaAdN6ANoCEdAqcOzO3UhFHV9lChoBkdAYFM8lolD4WgHTegDaAhHQKnF+4J/oaF1fZQoaAZHQGcSq9PDYRNoB03oA2gIR0CpxxnEl3QldX2UKGgGR0BgxtKVY6n0aAdN6ANoCEdAqckbUutfX3V9lChoBkdAZrsk2xY7rGgHTegDaAhHQKnKEs1baAZ1fZQoaAZHQFsD2TgVGkNoB03oA2gIR0Cpyi9QGfPHdX2UKGgGR0BiYAJgLJCCaAdN6ANoCEdAqcsWXeFcp3V9lChoBkdAZIaEUTL4e2gHTegDaAhHQKnLNeSB9Th1fZQoaAZHQGBLabvw3HdoB03oA2gIR0CpzEko4MnadX2UKGgGR0BjriAFxGUfaAdN6ANoCEdAqdFKkAPuonV9lChoBkdAYoF9Brvb5GgHTegDaAhHQKnSpvAoG6h1fZQoaAZHQFxULxI8QqZoB03oA2gIR0Cp06rFGXoldX2UKGgGR0Be5CHuZ1FIaAdN6ANoCEdAqdd8bBGhEnV9lChoBkdAYj9MN+b3GmgHTegDaAhHQKnZuzLwF1V1fZQoaAZHQGbfaYE4ecRoB03oA2gIR0Cp3bFVcUuddX2UKGgGR0BjT+0Z3s5XaAdN6ANoCEdAqd3ysMiKSHV9lChoBkdAZMT0lJHy3GgHTegDaAhHQKngLechC+l1fZQoaAZHQGNiAhje9BdoB03oA2gIR0Cp4DCEQGwBdX2UKGgGR0BiLThP0qYraAdN6ANoCEdAqeGIddVvM3V9lChoBkdAThhjawljVmgHS5poCEdAqeILIV/MGHV9lChoBkdAYcbkkrwvx2gHTegDaAhHQKnmLGEPDpF1fZQoaAZHQGMFUAtFrmBoB03oA2gIR0Cp5oN29tdidX2UKGgGR0BkRVe6Zpi7aAdN6ANoCEdAqeh8+1SflXV9lChoBkdAX9Q+wC8vmGgHTegDaAhHQKnt245Lh751fZQoaAZHQGT9rkS26TZoB03oA2gIR0Cp74XKr7wbdX2UKGgGR0BemIPkJa7maAdN6ANoCEdAqfDFQQ+UyHV9lChoBkdAYZO6/Zdv9GgHTegDaAhHQKnw4ecx0uF1fZQoaAZHQGZsHcDbJwNoB03oA2gIR0Cp8XIrOJLvdX2UKGgGR0BiSxfjS5RTaAdN6ANoCEdAqfrxc3VConV9lChoBkdAWppt2s7uD2gHTegDaAhHQKn9NWWhRIl1fZQoaAZHQF8nJWNm16VoB03oA2gIR0Cp/ZE9U0emdX2UKGgGR0BmGqjgydnTaAdN6ANoCEdAqf2TeoDPnnV9lChoBkdAYJBoi9qUNmgHTegDaAhHQKoF1RSgoPV1fZQoaAZHQF2TXVbzK9xoB03oA2gIR0CqBjHgHeJpdX2UKGgGR0Bfm8hxHXmOaAdN6ANoCEdAqgah6F/QSnV9lChoBkdAZylwT/Q0GmgHTegDaAhHQKoHbDYRNAV1fZQoaAZHQGcCmLcbiqBoB03oA2gIR0CqCBCB5HEudX2UKGgGR0BhFidxyXD4aAdN6ANoCEdAqggSMm4RVnV9lChoBkdAYikpHZsbemgHTegDaAhHQKoJz96Tnq51fZQoaAZHQF2Abr1M/QloB03oA2gIR0CqECvQnhKldX2UKGgGR0BlVwFV1fVqaAdN6ANoCEdAqhVq8jAzpHV9lChoBkdAZUI43m3fAWgHTegDaAhHQKobipfhMrV1fZQoaAZHQGJOSFGoaUBoB03oA2gIR0CqG7Vjy4FzdX2UKGgGR0BbPbaufVZtaAdN6ANoCEdAqh/qSV4X43V9lChoBkdAY26SeyzHCGgHTegDaAhHQKohzM8ox591fZQoaAZHQGP4DUVi4KBoB03oA2gIR0CqIeI/Z/TcdX2UKGgGR0A9flt0mtyQaAdLx2gIR0CqI1PsRg7YdX2UKGgGR0Bigvlp48lpaAdN6ANoCEdAqiQWNHYpUnV9lChoBkdAZudt4RmK7GgHTegDaAhHQKoknIClrM11fZQoaAZHQFrhH7gsK9hoB03oA2gIR0CqKGJNbkfcdX2UKGgGR0BiRkGkep4saAdN6ANoCEdAqiuglKK51HV9lChoBkdAaXzNqQA+6mgHTegDaAhHQKouCLkS26V1fZQoaAZHQGQTYtHxz7xoB03oA2gIR0CqMTq/mDDkdX2UKGgGR0BmD6WLP2PDaAdN6ANoCEdAqjLeBWgezXV9lChoBkdAYPeGEf1YhmgHTegDaAhHQKo1qt8uzyB1fZQoaAZHQGE3nZsbedloB03oA2gIR0CqOOJDVpbmdX2UKGgGR0BkTZnOB19waAdN6ANoCEdAqjs2v6j323V9lChoBkdAZq1mDDjzZ2gHTegDaAhHQKo8Nz5GjKx1fZQoaAZHQGXPqO1fE4xoB03oA2gIR0CqPp9If8uSdX2UKGgGR0BknCv7m+0xaAdN6ANoCEdAqkDHMnqmj3V9lChoBkdAZ1yvRJEpiWgHTegDaAhHQKpCNvgm7at1fZQoaAZHQGV3FAVwgkloB03oA2gIR0CqRVHuiN83dX2UKGgGR0BhdnVqesgdaAdN6ANoCEdAqkrML8aXKXV9lChoBkdAKtEQXhwVCWgHS8JoCEdAqk9g00m+kHV9lChoBkdAYknJ5mh/RWgHTegDaAhHQKpRUxIJ7cB1fZQoaAZHQFwvVxS5y2hoB03oA2gIR0CqUpRhc7hfdX2UKGgGR0Bk8wphF3INaAdN6ANoCEdAqlYFKyv9tXV9lChoBkdAY7zDSgGr0mgHTegDaAhHQKpWNcC5mRN1fZQoaAZHQGOUgdwNsnBoB03oA2gIR0CqV73ZXdTHdX2UKGgGR0BmFw02tMfzaAdN6ANoCEdAqlibTH80lHV9lChoBkdAWpQBeXzDoGgHTegDaAhHQKpaPbJOnEV1fZQoaAZHQGKryksSTQpoB03oA2gIR0CqWyq1XvH+dX2UKGgGR0BkCfUQTVUdaAdN6ANoCEdAqltK7ZnL73V9lChoBkdAZhc2iL2pQ2gHTegDaAhHQKpcL9vS+g11fZQoaAZHQFmPjcVQAMloB03oA2gIR0CqXaVIZqEfdX2UKGgGR0BGIlPznRsuaAdLnWgIR0CqYQN8/lhgdX2UKGgGR0BjfxpDeCTVaAdN6ANoCEdAqmQX7m+0xHV9lChoBkdAYDb/4qPOp2gHTegDaAhHQKpl95xBE8d1fZQoaAZHQF9cS8rZrYZoB03oA2gIR0CqZ00YKpkxdX2UKGgGR0BiJhvNu+AVaAdN6ANoCEdAqmtnXqZ+hHV9lChoBkdAZSVBzmwJPmgHTegDaAhHQKptbzq8lHB1fZQoaAZHQF/vdhy8zyloB03oA2gIR0Cqb/ALiMo+dX2UKGgGR0BaOJP69CeFaAdN6ANoCEdAqnAXtdAxBXV9lChoBkdAZazhw2l2vGgHTegDaAhHQKpxix59mYl1fZQoaAZHQGSYim2sq8VoB03oA2gIR0CqcYwSBbwCdX2UKGgGR0BdzBwZOzppaAdN6ANoCEdAqnJUsasIV3V9lChoBkdAYgPYkmhM8GgHTegDaAhHQKpy0WRigCh1fZQoaAZHQGGgn2h7E51oB03oA2gIR0Cqd3xKxs2vdX2UKGgGR0Bi9BrLyMDPaAdN6ANoCEdAqnfZoduHe3V9lChoBkdAZJBMfzSThmgHTegDaAhHQKp6GAuIyj51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:562b191bbd5edb2350170b9fcd5c2af2cf5d4ccf7c185f5e526a6316c9663473
|
3 |
+
size 150192
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,57 +4,57 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -65,26 +65,26 @@
|
|
65 |
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
-
"_np_random":
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
-
"_np_random":
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b3dedb7bd90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3dedb7be20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3dedb7beb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3dedb7bf40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b3dedb84040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b3dedb840d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3dedb84160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3dedb841f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b3dedb84280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3dedb84310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3dedb843a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3dedb84430>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b3dedb27200>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2097152,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1722168826047465822,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM2QR72PTme6XMK/OwC74TgyJZA6KA1pugAAgD8AAIA/AEfpvMP1azd/YLU666BuNErTobr9RY8zAACAPwAAgD8acQU99ixVujtLSrq+4wq28NYzOva0YzkAAIA/AACAPzMjJbu4pva5DPK8uzJzqjWHpU8626wWtQAAgD8AAIA/AAYAPRTChLqGdCY5kh+vNU+I/zoGwz64AACAPwAAgD+mQME9XMNUulpRG7ox7Ag1HkhCO+H7MzkAAIA/AACAP826Sjx70qa6SpSDuT6X5rXPLYK6QOQlOAAAgD8AAIA/RsdiPl+4QT+qF7E8X+SyvnRCaD46vtu9AAAAAAAAAACamYy87PHxufO+GbrBTqa1upcJO7LiMzkAAIA/AACAP03Klj1cv2q6FsxpvJcl17jRRP66nU5COAAAgD8AAIA/Gn87vVzvdrplNby7euGHuIOipTsw+FI4AACAPwAAgD/mHgM9uCbvueElFLyd0CA3b0iBOtG/lLYAAIA/AACAP83aJrxcG1G6UEnPu1GVAL1HuW84O3fhvQAAAAAAAIA/ANzEu3uSgLrSFs25cr0VObVvVruLScs4AACAPwAAgD8azCm9ewz6upaVFLuJsrO81d4BPGk7nD0AAIA/AACAPwCAu7ppQQY/+hwKvpoSV77wz6K9klOnvQAAAAAAAAAAAG0aPfY4Q7rovWm6OePPNYR1BTttMYY5AACAPwAAgD8AzBS8rn+kOUmtx7xn9D885C5Iu4Pk1DwAAAAAAAAAANo+gz3sGZG58mXnu3DNh7xMwGW6c/FtPQAAgD8AAAAAAINtPbgG/bk+qaK6E9TxtaOQXzsGx705AACAPwAAgD9d/pu+5ut0PwK/lb4hP/S+ZZCuvhNwpTwAAAAAAAAAABr7T70fZYO5yuL0u5fDMbnUf/+70sKlOAAAgD8AAIA/c6mdvSlYUronhxC6/AWuNTWgyTv6SCg5AACAPwAAgD8AQoo8KQgDurYHtTwUQoO3S2PAuhITfLYAAIA/AACAP7NcJj42mzk/ldHkPawzxL6nSD4+ag0rugAAAAAAAAAAgPIXvbjG1rlaWc475CnKO9TIBTzzZLy8AACAPwAAgD8AVQo9NkqvP/e/MD9VR9i+IiskvXTAP74AAAAAAAAAADOav73DPyI7sEx/vocVE776xpK9tOeSPwAAgD8AAAAA812VvVzDJLruYhU7tyQotoh0zbquzC26AACAPwAAgD/tiCg+GT/KPnWmkL4+m6O+fVkFvXgEHj0AAAAAAAAAAGaUHj17CIO6Gu0xvLzdQ7adVms7U4+xNQAAgD8AAIA/c1T1Peq/2j74amG+bOdyvthoTTzR9q29AAAAAAAAAABm3gm9uFbsuSq2pjozFjq008cquLOkxbkAAIA/AACAP4BLGb3DhUa6wNkpNwG6fTWwxoC78JhLtgAAgD8AAIA/GmEYvQ/GKrxLjti6tkapPEQLkb3Jm4o9AACAPwAAgD+zy2A9XMsHuhIKEzy+UQY2FtKCOrLU+TQAAIA/AACAP03007328Ay6MzJqO9Z/hThNqg+7ixUOugAAgD8AAIA/AK56vMMtF7pw9Nm6YK+Jtvoz8js7r/85AACAPwAAgD9NfJW9w3lwulbi3jpbMI81jiOtOkMGdDQAAIA/AACAP8149zxcGyq6VTW6OpV9CDYBPAA6nsLYuQAAgD8AAIA/5o4KvWOaWz9AQuo4qrDeviUJ/L0jQLs5AAAAAAAAAADN3hU9FOKFuoPCdbpiEwW2NJ8eO4b7ijkAAIA/AACAPzPmCj7fu7I+BhdDvjqYm74o1F88C825vQAAAAAAAAAAWmwiPn0ihj42Ujy+t/YivopQNL0eb5K9AAAAAAAAAAAA9Bi8SPekuuwdI7q6mRq2KsPCOU5fOjkAAIA/AACAP2YuTDyu34W6m/qVuXR2JjZ1vPQ6OdWrOAAAgD8AAIA/ZjO7vDs6l7waWKm8E84zPf8xA7y0dhC8AACAPwAAgD/mSQU9ebCeP8/kKT4XygO/kZ5ZPC00DL0AAAAAAAAAAI0Pob3cfUY/9mMqvNDmx75tgpS9ufYMPQAAAAAAAAAA5tpGPY82WLoCco27RmK/OYD8ijqr1wQ6AACAPwAAgD+zhBS9exqSusUo/LpnU608YsK0O9hilb0AAIA/AACAP5plN70UBqe6F0IcuxWni7VP6v066L0xOgAAgD8AAIA/TXqyPcOpf7oG2fK7s5OqOBwmAjq1CeE5AACAPwAAgD+aar884QH5PVlCHr3XG0K+NvcSvU1btjwAAAAAAAAAAM2qhLxIeYC6LuJLO9G06DVbPzK7AtxpugAAgD8AAIA/TSJCvXsaobr21lm4vDPEMbJ4kLog43k3AACAPwAAgD+amqW89nxcunaH5DirETa1qC3nucdeKLQAAIA/AACAP2a8s7wp8F+6oaYRPMtj2rjnecy6Q5fQtwAAgD8AAIA/M1PAPI8mbrpLQ3c7Y8YNOE6sXrriJfW2AACAPwAAgD+aw/q8KZAXukkRm7sBGfa14E3aOnCXXjUAAIA/AACAP2b0Kb0coZ8/sSAGvvBR7b5Mmuy9HVbCvQAAAAAAAAAAml2Au7he8Lnu/BM60e+9tcGXGju0BCq5AACAPwAAgD8w8oE+gfs0P8rYlL2EBce+A8RVPsZxyb0AAAAAAAAAADrnEb6cZhq8EgTWvbf3dLznw409ArhLPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.04857599999999995,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQbpGnXNC+MAWyUTegDjAF0lEdAqaXXPeHi33V9lChoBkdAYin60IC2dGgHTegDaAhHQKmngfHxSYR1fZQoaAZHQGSpqrJbMX9oB03oA2gIR0Cpqrz9sJpndX2UKGgGR0BjU945cTrWaAdN6ANoCEdAqa1RLmITG3V9lChoBkdAX6+F9KEnLWgHTegDaAhHQKmvBvQ4S6F1fZQoaAZHQGJzsenyd4FoB03oA2gIR0CpsipbUwztdX2UKGgGR0BhIIaLn9vTaAdN6ANoCEdAqbZe6ClJpXV9lChoBkdAT/G3DvVmSWgHS61oCEdAqbx4jSofjnV9lChoBkdAZl1XT3IuG2gHTegDaAhHQKm+HyJ9Aop1fZQoaAZHQF0gKFqSHM5oB03oA2gIR0Cpw2vbO/tZdX2UKGgGR0BZn+lwcYIjaAdN6ANoCEdAqcOzO3UhFHV9lChoBkdAYFM8lolD4WgHTegDaAhHQKnF+4J/oaF1fZQoaAZHQGcSq9PDYRNoB03oA2gIR0CpxxnEl3QldX2UKGgGR0BgxtKVY6n0aAdN6ANoCEdAqckbUutfX3V9lChoBkdAZrsk2xY7rGgHTegDaAhHQKnKEs1baAZ1fZQoaAZHQFsD2TgVGkNoB03oA2gIR0Cpyi9QGfPHdX2UKGgGR0BiYAJgLJCCaAdN6ANoCEdAqcsWXeFcp3V9lChoBkdAZIaEUTL4e2gHTegDaAhHQKnLNeSB9Th1fZQoaAZHQGBLabvw3HdoB03oA2gIR0CpzEko4MnadX2UKGgGR0BjriAFxGUfaAdN6ANoCEdAqdFKkAPuonV9lChoBkdAYoF9Brvb5GgHTegDaAhHQKnSpvAoG6h1fZQoaAZHQFxULxI8QqZoB03oA2gIR0Cp06rFGXoldX2UKGgGR0Be5CHuZ1FIaAdN6ANoCEdAqdd8bBGhEnV9lChoBkdAYj9MN+b3GmgHTegDaAhHQKnZuzLwF1V1fZQoaAZHQGbfaYE4ecRoB03oA2gIR0Cp3bFVcUuddX2UKGgGR0BjT+0Z3s5XaAdN6ANoCEdAqd3ysMiKSHV9lChoBkdAZMT0lJHy3GgHTegDaAhHQKngLechC+l1fZQoaAZHQGNiAhje9BdoB03oA2gIR0Cp4DCEQGwBdX2UKGgGR0BiLThP0qYraAdN6ANoCEdAqeGIddVvM3V9lChoBkdAThhjawljVmgHS5poCEdAqeILIV/MGHV9lChoBkdAYcbkkrwvx2gHTegDaAhHQKnmLGEPDpF1fZQoaAZHQGMFUAtFrmBoB03oA2gIR0Cp5oN29tdidX2UKGgGR0BkRVe6Zpi7aAdN6ANoCEdAqeh8+1SflXV9lChoBkdAX9Q+wC8vmGgHTegDaAhHQKnt245Lh751fZQoaAZHQGT9rkS26TZoB03oA2gIR0Cp74XKr7wbdX2UKGgGR0BemIPkJa7maAdN6ANoCEdAqfDFQQ+UyHV9lChoBkdAYZO6/Zdv9GgHTegDaAhHQKnw4ecx0uF1fZQoaAZHQGZsHcDbJwNoB03oA2gIR0Cp8XIrOJLvdX2UKGgGR0BiSxfjS5RTaAdN6ANoCEdAqfrxc3VConV9lChoBkdAWppt2s7uD2gHTegDaAhHQKn9NWWhRIl1fZQoaAZHQF8nJWNm16VoB03oA2gIR0Cp/ZE9U0emdX2UKGgGR0BmGqjgydnTaAdN6ANoCEdAqf2TeoDPnnV9lChoBkdAYJBoi9qUNmgHTegDaAhHQKoF1RSgoPV1fZQoaAZHQF2TXVbzK9xoB03oA2gIR0CqBjHgHeJpdX2UKGgGR0Bfm8hxHXmOaAdN6ANoCEdAqgah6F/QSnV9lChoBkdAZylwT/Q0GmgHTegDaAhHQKoHbDYRNAV1fZQoaAZHQGcCmLcbiqBoB03oA2gIR0CqCBCB5HEudX2UKGgGR0BhFidxyXD4aAdN6ANoCEdAqggSMm4RVnV9lChoBkdAYikpHZsbemgHTegDaAhHQKoJz96Tnq51fZQoaAZHQF2Abr1M/QloB03oA2gIR0CqECvQnhKldX2UKGgGR0BlVwFV1fVqaAdN6ANoCEdAqhVq8jAzpHV9lChoBkdAZUI43m3fAWgHTegDaAhHQKobipfhMrV1fZQoaAZHQGJOSFGoaUBoB03oA2gIR0CqG7Vjy4FzdX2UKGgGR0BbPbaufVZtaAdN6ANoCEdAqh/qSV4X43V9lChoBkdAY26SeyzHCGgHTegDaAhHQKohzM8ox591fZQoaAZHQGP4DUVi4KBoB03oA2gIR0CqIeI/Z/TcdX2UKGgGR0A9flt0mtyQaAdLx2gIR0CqI1PsRg7YdX2UKGgGR0Bigvlp48lpaAdN6ANoCEdAqiQWNHYpUnV9lChoBkdAZudt4RmK7GgHTegDaAhHQKoknIClrM11fZQoaAZHQFrhH7gsK9hoB03oA2gIR0CqKGJNbkfcdX2UKGgGR0BiRkGkep4saAdN6ANoCEdAqiuglKK51HV9lChoBkdAaXzNqQA+6mgHTegDaAhHQKouCLkS26V1fZQoaAZHQGQTYtHxz7xoB03oA2gIR0CqMTq/mDDkdX2UKGgGR0BmD6WLP2PDaAdN6ANoCEdAqjLeBWgezXV9lChoBkdAYPeGEf1YhmgHTegDaAhHQKo1qt8uzyB1fZQoaAZHQGE3nZsbedloB03oA2gIR0CqOOJDVpbmdX2UKGgGR0BkTZnOB19waAdN6ANoCEdAqjs2v6j323V9lChoBkdAZq1mDDjzZ2gHTegDaAhHQKo8Nz5GjKx1fZQoaAZHQGXPqO1fE4xoB03oA2gIR0CqPp9If8uSdX2UKGgGR0BknCv7m+0xaAdN6ANoCEdAqkDHMnqmj3V9lChoBkdAZ1yvRJEpiWgHTegDaAhHQKpCNvgm7at1fZQoaAZHQGV3FAVwgkloB03oA2gIR0CqRVHuiN83dX2UKGgGR0BhdnVqesgdaAdN6ANoCEdAqkrML8aXKXV9lChoBkdAKtEQXhwVCWgHS8JoCEdAqk9g00m+kHV9lChoBkdAYknJ5mh/RWgHTegDaAhHQKpRUxIJ7cB1fZQoaAZHQFwvVxS5y2hoB03oA2gIR0CqUpRhc7hfdX2UKGgGR0Bk8wphF3INaAdN6ANoCEdAqlYFKyv9tXV9lChoBkdAY7zDSgGr0mgHTegDaAhHQKpWNcC5mRN1fZQoaAZHQGOUgdwNsnBoB03oA2gIR0CqV73ZXdTHdX2UKGgGR0BmFw02tMfzaAdN6ANoCEdAqlibTH80lHV9lChoBkdAWpQBeXzDoGgHTegDaAhHQKpaPbJOnEV1fZQoaAZHQGKryksSTQpoB03oA2gIR0CqWyq1XvH+dX2UKGgGR0BkCfUQTVUdaAdN6ANoCEdAqltK7ZnL73V9lChoBkdAZhc2iL2pQ2gHTegDaAhHQKpcL9vS+g11fZQoaAZHQFmPjcVQAMloB03oA2gIR0CqXaVIZqEfdX2UKGgGR0BGIlPznRsuaAdLnWgIR0CqYQN8/lhgdX2UKGgGR0BjfxpDeCTVaAdN6ANoCEdAqmQX7m+0xHV9lChoBkdAYDb/4qPOp2gHTegDaAhHQKpl95xBE8d1fZQoaAZHQF9cS8rZrYZoB03oA2gIR0CqZ00YKpkxdX2UKGgGR0BiJhvNu+AVaAdN6ANoCEdAqmtnXqZ+hHV9lChoBkdAZSVBzmwJPmgHTegDaAhHQKptbzq8lHB1fZQoaAZHQF/vdhy8zyloB03oA2gIR0Cqb/ALiMo+dX2UKGgGR0BaOJP69CeFaAdN6ANoCEdAqnAXtdAxBXV9lChoBkdAZazhw2l2vGgHTegDaAhHQKpxix59mYl1fZQoaAZHQGSYim2sq8VoB03oA2gIR0CqcYwSBbwCdX2UKGgGR0BdzBwZOzppaAdN6ANoCEdAqnJUsasIV3V9lChoBkdAYgPYkmhM8GgHTegDaAhHQKpy0WRigCh1fZQoaAZHQGGgn2h7E51oB03oA2gIR0Cqd3xKxs2vdX2UKGgGR0Bi9BrLyMDPaAdN6ANoCEdAqnfZoduHe3V9lChoBkdAZJBMfzSThmgHTegDaAhHQKp6GAuIyj51ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 160,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
65 |
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 64,
|
80 |
+
"n_steps": 2048,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab1c685bbfa3996034dc2915097d47752dde7fc60f03e575f34f18407eaaf67c
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b4d612431b06ca2f4d7a0d52a3c5fd74e67eaba11b0624b0e2d55b9be47153e
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 269.1603863, "std_reward": 15.404578250998064, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-28T13:12:33.818181"}
|