File size: 26,748 Bytes
64eeb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Parameters
num_nodes = 100
time_steps = 1000  # Number of time steps for signal generation
frequency = 1  # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0  # Amplitude of the sinusoidal wave
sampling_rate = 1000  # Samples per second
infrared_voltage = 0.7  # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50  # Frequency of PWM in Hz

# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
    # Generate a sinusoidal signal
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    # Generate PWM signal based on the sinusoidal signal
    pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
    return pwm_signal

# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
    # Simulate storing data using infrared voltage energy
    stored_signal = pwm_signal * voltage
    return stored_signal

# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
    # Apply a phase shift to simulate transmission towards a given direction
    transmitted_signal = np.roll(stored_signal, phase_shift)
    return transmitted_signal

# Create a time array
time = np.linspace(0, 1, time_steps)

# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)

# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)

# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)

# Plot the SPWM signal, stored signal, and transmitted signal
plt.figure(figsize=(15, 8))

plt.subplot(3, 1, 1)
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.subplot(3, 1, 2)
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
plt.title('Data Stored using Infrared Voltage Energy')
plt.xlabel('Time (s)')
plt.ylabel('Voltage')
plt.grid(True)
plt.legend()

plt.subplot(3, 1, 3)
plt.plot(time, transmitted_signal, color='green', label='Transmitted Signal')
plt.title('Transmitted Signal towards a Given Direction')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Parameters
num_nodes = 100
time_steps = 1000  # Number of time steps for signal generation
frequency = 1  # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0  # Amplitude of the sinusoidal wave
sampling_rate = 1000  # Samples per second
infrared_voltage = 0.7  # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50  # Frequency of PWM in Hz
attenuation_factor = 0.5  # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2  # Intensity of noise to simulate interference
multi_path_delay = 50  # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3  # Amplitude of the delayed multi-path signal

# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
    # Generate a sinusoidal signal
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    # Generate PWM signal based on the sinusoidal signal
    pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
    return pwm_signal

# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
    # Simulate storing data using infrared voltage energy
    stored_signal = pwm_signal * voltage
    return stored_signal

# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
    # Apply a phase shift to simulate transmission towards a given direction
    transmitted_signal = np.roll(stored_signal, phase_shift)
    return transmitted_signal

# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
    # Apply exponential decay to simulate attenuation
    attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
    attenuated_signal = signal * attenuation
    return attenuated_signal

# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
    noise = noise_intensity * np.random.randn(len(signal))
    noisy_signal = signal + noise
    return noisy_signal

# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
    delayed_signal = np.roll(signal, delay) * amplitude
    combined_signal = signal + delayed_signal
    return combined_signal

# Create a time array
time = np.linspace(0, 1, time_steps)

# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)

# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)

# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)

# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)

# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)

# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)

# Plot the SPWM signal, stored signal, transmitted signal, and final signal
plt.figure(figsize=(15, 12))

plt.subplot(4, 1, 1)
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.subplot(4, 1, 2)
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
plt.title('Data Stored using Infrared Voltage Energy')
plt.xlabel('Time (s)')
plt.ylabel('Voltage')
plt.grid(True)
plt.legend()

plt.subplot(4, 1, 3)
plt.plot(time, transmitted_signal, color='green', label='Transmitted Signal')
plt.title('Transmitted Signal towards a Given Direction')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.subplot(4, 1, 4)
plt.plot(time, final_signal, color='purple', label='Final Signal with Attenuation, Noise, and Multi-Path Effects')
plt.title('Final Signal in Dense Space')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# Parameters
num_nodes = 100
time_steps = 1000  # Number of time steps for signal generation
frequency = 1  # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0  # Amplitude of the sinusoidal wave
sampling_rate = 1000  # Samples per second
infrared_voltage = 0.7  # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50  # Frequency of PWM in Hz
attenuation_factor = 0.5  # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2  # Intensity of noise to simulate interference
multi_path_delay = 50  # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3  # Amplitude of the delayed multi-path signal

# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
    # Generate a sinusoidal signal
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    # Generate PWM signal based on the sinusoidal signal
    pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
    return pwm_signal

# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
    # Simulate storing data using infrared voltage energy
    stored_signal = pwm_signal * voltage
    return stored_signal

# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
    # Apply a phase shift to simulate transmission towards a given direction
    transmitted_signal = np.roll(stored_signal, phase_shift)
    return transmitted_signal

# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
    # Apply exponential decay to simulate attenuation
    attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
    attenuated_signal = signal * attenuation
    return attenuated_signal

# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
    noise = noise_intensity * np.random.randn(len(signal))
    noisy_signal = signal + noise
    return noisy_signal

# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
    delayed_signal = np.roll(signal, delay) * amplitude
    combined_signal = signal + delayed_signal
    return combined_signal

# Create a time array
time = np.linspace(0, 1, time_steps)

# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)

# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)

# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)

# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)

# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)

# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)

# Plot the animated signal
fig, ax = plt.subplots(figsize=(15, 6))
line, = ax.plot([], [], color='purple')
ax.set_xlim(0, time_steps)
ax.set_ylim(-1.5, 1.5)
ax.set_title('Animated Signal Transmission')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.grid(True)

# Animation function to update the frame
def animate(frame):
    # Update the signal to show propagation over time
    current_signal = np.roll(final_signal, frame)
    line.set_data(np.arange(len(current_signal)), current_signal)
    return line,

# Create the animation
ani = FuncAnimation(fig, animate, frames=time_steps, interval=20, blit=True)

# Show the animation
plt.show()

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# Parameters
num_nodes = 100
time_steps = 1000  # Number of time steps for signal generation
frequency = 1  # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0  # Amplitude of the sinusoidal wave
sampling_rate = 1000  # Samples per second
infrared_voltage = 0.7  # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50  # Frequency of PWM in Hz
attenuation_factor = 0.5  # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2  # Intensity of noise to simulate interference
multi_path_delay = 50  # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3  # Amplitude of the delayed multi-path signal

# Encryption parameters
encryption_keys = [0.5, 1.2, 0.9]  # Different keys for multi-layered encryption

# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
    # Generate a sinusoidal signal
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    # Generate PWM signal based on the sinusoidal signal
    pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
    return pwm_signal

# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
    # Simulate storing data using infrared voltage energy
    stored_signal = pwm_signal * voltage
    return stored_signal

# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
    # Apply a phase shift to simulate transmission towards a given direction
    transmitted_signal = np.roll(stored_signal, phase_shift)
    return transmitted_signal

# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
    # Apply exponential decay to simulate attenuation
    attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
    attenuated_signal = signal * attenuation
    return attenuated_signal

# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
    noise = noise_intensity * np.random.randn(len(signal))
    noisy_signal = signal + noise
    return noisy_signal

# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
    delayed_signal = np.roll(signal, delay) * amplitude
    combined_signal = signal + delayed_signal
    return combined_signal

# Layered Encryption
def layered_encryption(signal, keys):
    encrypted_signal = signal.copy()
    for key in keys:
        encrypted_signal = np.sin(encrypted_signal * key)  # Encrypting layer
    return encrypted_signal

# Layered Decryption
def layered_decryption(encrypted_signal, keys):
    decrypted_signal = encrypted_signal.copy()
    for key in reversed(keys):
        decrypted_signal = np.arcsin(decrypted_signal) / key  # Decrypting layer
    return decrypted_signal

# Create a time array
time = np.linspace(0, 1, time_steps)

# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)

# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)

# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)

# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)

# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)

# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)

# Encrypt the final signal with layered VPN-like encryption
encrypted_signal = layered_encryption(final_signal, encryption_keys)

# Decrypt the signal for verification
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)

# Plot the encrypted signal and decrypted signal
fig, ax = plt.subplots(2, 1, figsize=(15, 12))

# Plot Encrypted Signal
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)

# Plot Decrypted Signal
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)

plt.tight_layout()
plt.show()

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# Parameters
num_nodes = 100
time_steps = 1000  # Number of time steps for signal generation
frequency = 1  # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0  # Amplitude of the sinusoidal wave
sampling_rate = 1000  # Samples per second
infrared_voltage = 0.7  # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50  # Frequency of PWM in Hz
attenuation_factor = 0.5  # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2  # Intensity of noise to simulate interference
multi_path_delay = 50  # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3  # Amplitude of the delayed multi-path signal

# Encryption parameters
encryption_keys = [0.5, 1.2, 0.9]  # Different keys for multi-layered encryption

# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
    # Generate a sinusoidal signal
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    # Generate PWM signal based on the sinusoidal signal
    pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
    return pwm_signal

# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
    # Simulate storing data using infrared voltage energy
    stored_signal = pwm_signal * voltage
    return stored_signal

# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
    # Apply a phase shift to simulate transmission towards a given direction
    transmitted_signal = np.roll(stored_signal, phase_shift)
    return transmitted_signal

# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
    # Apply exponential decay to simulate attenuation
    attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
    attenuated_signal = signal * attenuation
    return attenuated_signal

# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
    noise = noise_intensity * np.random.randn(len(signal))
    noisy_signal = signal + noise
    return noisy_signal

# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
    delayed_signal = np.roll(signal, delay) * amplitude
    combined_signal = signal + delayed_signal
    return combined_signal

# Layered Encryption
def layered_encryption(signal, keys):
    encrypted_signal = signal.copy()
    for key in keys:
        encrypted_signal = np.sin(encrypted_signal * key)  # Encrypting layer
    return encrypted_signal

# Layered Decryption
def layered_decryption(encrypted_signal, keys):
    decrypted_signal = encrypted_signal.copy()
    for key in reversed(keys):
        decrypted_signal = np.arcsin(decrypted_signal) / key  # Decrypting layer
    return decrypted_signal

# Create a time array
time = np.linspace(0, 1, time_steps)

# Generate SPWM Signal
def generate_spwm_signal(time, frequency, amplitude):
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    threshold = np.mean(sine_wave)  # Use mean of sine wave as threshold
    pwm_signal = np.where(sine_wave > threshold, 1, 0)
    return pwm_signal

# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)

# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)

# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)

# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)

# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)

# Encrypt the final signal with layered VPN-like encryption
encrypted_signal = layered_encryption(final_signal, encryption_keys)

# Decrypt the signal for verification
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)

# Plot the encrypted signal and decrypted signal
fig, ax = plt.subplots(2, 1, figsize=(15, 12))

# Plot Encrypted Signal
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)

# Plot Decrypted Signal
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)

plt.tight_layout()
plt.show()

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

# Parameters
num_nodes = 100
time_steps = 1000  # Number of time steps for signal generation
frequency = 1  # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0  # Amplitude of the sinusoidal wave
sampling_rate = 1000  # Samples per second
infrared_voltage = 0.7  # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50  # Frequency of PWM in Hz
attenuation_factor = 0.5  # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2  # Intensity of noise to simulate interference
multi_path_delay = 50  # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3  # Amplitude of the delayed multi-path signal

# Encryption parameters
encryption_keys = [0.5, 1.2, 0.9]  # Different keys for multi-layered encryption

# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
    sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
    threshold = np.mean(sine_wave)  # Use mean of sine wave as threshold
    pwm_signal = np.where(sine_wave > threshold, 1, 0)
    return pwm_signal

# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
    # Simulate storing data using infrared voltage energy
    stored_signal = pwm_signal * voltage
    return stored_signal

# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
    # Apply a phase shift to simulate transmission towards a given direction
    transmitted_signal = np.roll(stored_signal, phase_shift)
    return transmitted_signal

# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
    # Use a more accurate model for attenuation
    attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
    attenuated_signal = signal * attenuation
    return attenuated_signal

# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
    noise = noise_intensity * np.random.randn(len(signal))
    noisy_signal = signal + noise
    return noisy_signal

# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
    delayed_signal = np.roll(signal, delay) * amplitude
    combined_signal = signal + delayed_signal
    return combined_signal

# Layered Encryption
def layered_encryption(signal, keys):
    encrypted_signal = signal.copy()
    for key in keys:
        encrypted_signal = np.sin(encrypted_signal * key)  # Encrypting layer
    return encrypted_signal

# Layered Decryption
def layered_decryption(encrypted_signal, keys):
    decrypted_signal = encrypted_signal.copy()
    for key in reversed(keys):
        decrypted_signal = np.arcsin(decrypted_signal) / key  # Decrypting layer
    return decrypted_signal

# Validate encryption and decryption
def validate_encryption(original_signal, encrypted_signal, decrypted_signal):
    assert np.allclose(original_signal, decrypted_signal, atol=1e-2), "Decryption failed to recover the original signal."


# Create a time array
time = np.linspace(0, 1, time_steps)

# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)

# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)

# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)

# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)

# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)

# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)

# Encrypt the final signal with layered VPN-like encryption
encrypted_signal = layered_encryption(final_signal, encryption_keys)

# Decrypt the signal for verification
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)

# Plot the encrypted signal and decrypted signal
fig, ax = plt.subplots(2, 1, figsize=(15, 12))

# Plot Encrypted Signal
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)

# Plot Decrypted Signal
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)

plt.tight_layout()
plt.show()

import matplotlib.pyplot as plt
import numpy as np

# Function to create a gradient color effect
def gradient_color(signal, cmap='viridis'):
    norm = plt.Normalize(signal.min(), signal.max())
    colors = plt.get_cmap(cmap)(norm(signal))
    return colors

# Create a time array
time = np.arange(len(final_signal))

# Generate gradient colors based on final signal
colors = gradient_color(final_signal)

# Plot the final signal with reflection effect
fig, ax = plt.subplots(figsize=(15, 6))

# Plot the final signal
ax.plot(time, final_signal, color='blue', label='Final Signal')

# Add reflection effect
reflection_factor = 0.3
reflection = final_signal * reflection_factor
reflection_color = 'lightblue'

# Plot the reflection
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')

# Add color gradient
for i in range(len(final_signal) - 1):
    ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)

# Enhance the plot
ax.set_title('Final Signal with Reflection and Color Gradient')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.legend()
ax.grid(True)

plt.show()

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as mcolors

# Function to create a gradient color effect
def gradient_color(signal, cmap='viridis'):
    norm = plt.Normalize(signal.min(), signal.max())
    colors = plt.get_cmap(cmap)(norm(signal))
    return colors

# Create a time array
time = np.arange(len(final_signal))

# Generate gradient colors based on final signal
colors = gradient_color(final_signal)

# Plot the final signal with reflection effect
fig, ax = plt.subplots(figsize=(15, 6))

# Create a smooth line plot with color transitions
for i in range(len(final_signal) - 1):
    ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)

# Add the final signal plot
ax.plot(time, final_signal, color='blue', alpha=0.5, label='Final Signal')

# Add reflection effect
reflection_factor = 0.3
reflection = final_signal * reflection_factor
reflection_color = 'lightblue'

# Plot the reflection
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')

# Enhance the plot
ax.set_title('PulseWavefront')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.legend()
ax.grid(True)

plt.show()