PulseWavefront / pulsewavefront.py
antitheft159's picture
Update pulsewavefront.py
89929ac verified
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Parameters
num_nodes = 100
time_steps = 1000 # Number of time steps for signal generation
frequency = 1 # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0 # Amplitude of the sinusoidal wave
sampling_rate = 1000 # Samples per second
infrared_voltage = 0.7 # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
# Generate a sinusoidal signal
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
# Generate PWM signal based on the sinusoidal signal
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
# Simulate storing data using infrared voltage energy
stored_signal = pwm_signal * voltage
return stored_signal
# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
# Apply a phase shift to simulate transmission towards a given direction
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
# Create a time array
time = np.linspace(0, 1, time_steps)
# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
# Plot the SPWM signal, stored signal, and transmitted signal
plt.figure(figsize=(15, 8))
plt.subplot(3, 1, 1)
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.subplot(3, 1, 2)
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
plt.title('Data Stored using Infrared Voltage Energy')
plt.xlabel('Time (s)')
plt.ylabel('Voltage')
plt.grid(True)
plt.legend()
plt.subplot(3, 1, 3)
plt.plot(time, transmitted_signal, color='green', label='Transmitted Signal')
plt.title('Transmitted Signal towards a Given Direction')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Parameters
num_nodes = 100
time_steps = 1000 # Number of time steps for signal generation
frequency = 1 # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0 # Amplitude of the sinusoidal wave
sampling_rate = 1000 # Samples per second
infrared_voltage = 0.7 # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2 # Intensity of noise to simulate interference
multi_path_delay = 50 # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
# Generate a sinusoidal signal
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
# Generate PWM signal based on the sinusoidal signal
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
# Simulate storing data using infrared voltage energy
stored_signal = pwm_signal * voltage
return stored_signal
# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
# Apply a phase shift to simulate transmission towards a given direction
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
# Apply exponential decay to simulate attenuation
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
# Create a time array
time = np.linspace(0, 1, time_steps)
# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)
# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
# Plot the SPWM signal, stored signal, transmitted signal, and final signal
plt.figure(figsize=(15, 12))
plt.subplot(4, 1, 1)
plt.plot(time, spwm_signal, color='blue', label='SPWM Signal')
plt.title('Sinusoidal Pulse Width Modulation (SPWM) Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.subplot(4, 1, 2)
plt.plot(time, infrared_stored_signal, color='red', label='Infrared Stored Signal')
plt.title('Data Stored using Infrared Voltage Energy')
plt.xlabel('Time (s)')
plt.ylabel('Voltage')
plt.grid(True)
plt.legend()
plt.subplot(4, 1, 3)
plt.plot(time, transmitted_signal, color='green', label='Transmitted Signal')
plt.title('Transmitted Signal towards a Given Direction')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.subplot(4, 1, 4)
plt.plot(time, final_signal, color='purple', label='Final Signal with Attenuation, Noise, and Multi-Path Effects')
plt.title('Final Signal in Dense Space')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Parameters
num_nodes = 100
time_steps = 1000 # Number of time steps for signal generation
frequency = 1 # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0 # Amplitude of the sinusoidal wave
sampling_rate = 1000 # Samples per second
infrared_voltage = 0.7 # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2 # Intensity of noise to simulate interference
multi_path_delay = 50 # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
# Generate a sinusoidal signal
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
# Generate PWM signal based on the sinusoidal signal
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
# Simulate storing data using infrared voltage energy
stored_signal = pwm_signal * voltage
return stored_signal
# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
# Apply a phase shift to simulate transmission towards a given direction
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
# Apply exponential decay to simulate attenuation
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
# Create a time array
time = np.linspace(0, 1, time_steps)
# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)
# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
# Plot the animated signal
fig, ax = plt.subplots(figsize=(15, 6))
line, = ax.plot([], [], color='purple')
ax.set_xlim(0, time_steps)
ax.set_ylim(-1.5, 1.5)
ax.set_title('Animated Signal Transmission')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.grid(True)
# Animation function to update the frame
def animate(frame):
# Update the signal to show propagation over time
current_signal = np.roll(final_signal, frame)
line.set_data(np.arange(len(current_signal)), current_signal)
return line,
# Create the animation
ani = FuncAnimation(fig, animate, frames=time_steps, interval=20, blit=True)
# Show the animation
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Parameters
num_nodes = 100
time_steps = 1000 # Number of time steps for signal generation
frequency = 1 # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0 # Amplitude of the sinusoidal wave
sampling_rate = 1000 # Samples per second
infrared_voltage = 0.7 # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2 # Intensity of noise to simulate interference
multi_path_delay = 50 # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
# Encryption parameters
encryption_keys = [0.5, 1.2, 0.9] # Different keys for multi-layered encryption
# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
# Generate a sinusoidal signal
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
# Generate PWM signal based on the sinusoidal signal
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
# Simulate storing data using infrared voltage energy
stored_signal = pwm_signal * voltage
return stored_signal
# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
# Apply a phase shift to simulate transmission towards a given direction
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
# Apply exponential decay to simulate attenuation
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
# Layered Encryption
def layered_encryption(signal, keys):
encrypted_signal = signal.copy()
for key in keys:
encrypted_signal = np.sin(encrypted_signal * key) # Encrypting layer
return encrypted_signal
# Layered Decryption
def layered_decryption(encrypted_signal, keys):
decrypted_signal = encrypted_signal.copy()
for key in reversed(keys):
decrypted_signal = np.arcsin(decrypted_signal) / key # Decrypting layer
return decrypted_signal
# Create a time array
time = np.linspace(0, 1, time_steps)
# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)
# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
# Encrypt the final signal with layered VPN-like encryption
encrypted_signal = layered_encryption(final_signal, encryption_keys)
# Decrypt the signal for verification
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
# Plot the encrypted signal and decrypted signal
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
# Plot Encrypted Signal
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)
# Plot Decrypted Signal
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Parameters
num_nodes = 100
time_steps = 1000 # Number of time steps for signal generation
frequency = 1 # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0 # Amplitude of the sinusoidal wave
sampling_rate = 1000 # Samples per second
infrared_voltage = 0.7 # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2 # Intensity of noise to simulate interference
multi_path_delay = 50 # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
# Encryption parameters
encryption_keys = [0.5, 1.2, 0.9] # Different keys for multi-layered encryption
# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
# Generate a sinusoidal signal
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
# Generate PWM signal based on the sinusoidal signal
pwm_signal = np.where(sine_wave > np.random.rand(len(time)), 1, 0)
return pwm_signal
# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
# Simulate storing data using infrared voltage energy
stored_signal = pwm_signal * voltage
return stored_signal
# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
# Apply a phase shift to simulate transmission towards a given direction
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
# Apply exponential decay to simulate attenuation
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
# Layered Encryption
def layered_encryption(signal, keys):
encrypted_signal = signal.copy()
for key in keys:
encrypted_signal = np.sin(encrypted_signal * key) # Encrypting layer
return encrypted_signal
# Layered Decryption
def layered_decryption(encrypted_signal, keys):
decrypted_signal = encrypted_signal.copy()
for key in reversed(keys):
decrypted_signal = np.arcsin(decrypted_signal) / key # Decrypting layer
return decrypted_signal
# Create a time array
time = np.linspace(0, 1, time_steps)
# Generate SPWM Signal
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
threshold = np.mean(sine_wave) # Use mean of sine wave as threshold
pwm_signal = np.where(sine_wave > threshold, 1, 0)
return pwm_signal
# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)
# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
# Encrypt the final signal with layered VPN-like encryption
encrypted_signal = layered_encryption(final_signal, encryption_keys)
# Decrypt the signal for verification
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
# Plot the encrypted signal and decrypted signal
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
# Plot Encrypted Signal
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)
# Plot Decrypted Signal
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)
plt.tight_layout()
plt.show()
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Parameters
num_nodes = 100
time_steps = 1000 # Number of time steps for signal generation
frequency = 1 # Frequency of the sinusoidal wave (Hz)
amplitude = 1.0 # Amplitude of the sinusoidal wave
sampling_rate = 1000 # Samples per second
infrared_voltage = 0.7 # Simulated infrared voltage for storage
pulse_width_modulation_frequency = 50 # Frequency of PWM in Hz
attenuation_factor = 0.5 # Attenuation factor for signal traveling through dense space
noise_intensity = 0.2 # Intensity of noise to simulate interference
multi_path_delay = 50 # Delay for multi-path effect in number of samples
multi_path_amplitude = 0.3 # Amplitude of the delayed multi-path signal
# Encryption parameters
encryption_keys = [0.5, 1.2, 0.9] # Different keys for multi-layered encryption
# SPWM Signal Generation
def generate_spwm_signal(time, frequency, amplitude):
sine_wave = amplitude * np.sin(2 * np.pi * frequency * time)
threshold = np.mean(sine_wave) # Use mean of sine wave as threshold
pwm_signal = np.where(sine_wave > threshold, 1, 0)
return pwm_signal
# Infrared Energy Storage
def infrared_storage(pwm_signal, voltage):
# Simulate storing data using infrared voltage energy
stored_signal = pwm_signal * voltage
return stored_signal
# Directional Transmission (simulating by a shift in phase)
def directional_transmission(stored_signal, phase_shift):
# Apply a phase shift to simulate transmission towards a given direction
transmitted_signal = np.roll(stored_signal, phase_shift)
return transmitted_signal
# Signal Attenuation in Dense Space
def attenuate_signal(signal, attenuation_factor):
# Use a more accurate model for attenuation
attenuation = np.exp(-attenuation_factor * np.arange(len(signal)) / len(signal))
attenuated_signal = signal * attenuation
return attenuated_signal
# Add Noise to Simulate Interference
def add_noise(signal, noise_intensity):
noise = noise_intensity * np.random.randn(len(signal))
noisy_signal = signal + noise
return noisy_signal
# Apply Multi-Path Effects
def multi_path_effects(signal, delay, amplitude):
delayed_signal = np.roll(signal, delay) * amplitude
combined_signal = signal + delayed_signal
return combined_signal
# Layered Encryption
def layered_encryption(signal, keys):
encrypted_signal = signal.copy()
for key in keys:
encrypted_signal = np.sin(encrypted_signal * key) # Encrypting layer
return encrypted_signal
# Layered Decryption
def layered_decryption(encrypted_signal, keys):
decrypted_signal = encrypted_signal.copy()
for key in reversed(keys):
decrypted_signal = np.arcsin(decrypted_signal) / key # Decrypting layer
return decrypted_signal
# Validate encryption and decryption
def validate_encryption(original_signal, encrypted_signal, decrypted_signal):
assert np.allclose(original_signal, decrypted_signal, atol=1e-2), "Decryption failed to recover the original signal."
# Create a time array
time = np.linspace(0, 1, time_steps)
# Generate SPWM Signal
spwm_signal = generate_spwm_signal(time, frequency, amplitude)
# Store the data using infrared voltage energy
infrared_stored_signal = infrared_storage(spwm_signal, infrared_voltage)
# Transmit the signal towards a given direction (simulate by shifting phase)
transmitted_signal = directional_transmission(infrared_stored_signal, phase_shift=100)
# Attenuate the signal in a densely populated space
attenuated_signal = attenuate_signal(transmitted_signal, attenuation_factor)
# Add noise to the signal
noisy_signal = add_noise(attenuated_signal, noise_intensity)
# Apply multi-path effects
final_signal = multi_path_effects(noisy_signal, multi_path_delay, multi_path_amplitude)
# Encrypt the final signal with layered VPN-like encryption
encrypted_signal = layered_encryption(final_signal, encryption_keys)
# Decrypt the signal for verification
decrypted_signal = layered_decryption(encrypted_signal, encryption_keys)
# Plot the encrypted signal and decrypted signal
fig, ax = plt.subplots(2, 1, figsize=(15, 12))
# Plot Encrypted Signal
ax[0].plot(np.arange(len(encrypted_signal)), encrypted_signal, color='purple')
ax[0].set_title('Encrypted Signal w/Layered VPN Protection')
ax[0].set_xlabel('Time Step')
ax[0].set_ylabel('Amplitude')
ax[0].grid(True)
# Plot Decrypted Signal
ax[1].plot(np.arange(len(decrypted_signal)), decrypted_signal, color='green')
ax[1].set_title('Decrypted Signal w/Layered VPN Decryption')
ax[1].set_xlabel('Time Step')
ax[1].set_ylabel('Amplitude')
ax[1].grid(True)
plt.tight_layout()
plt.show()
import matplotlib.pyplot as plt
import numpy as np
# Function to create a gradient color effect
def gradient_color(signal, cmap='viridis'):
norm = plt.Normalize(signal.min(), signal.max())
colors = plt.get_cmap(cmap)(norm(signal))
return colors
# Create a time array
time = np.arange(len(final_signal))
# Generate gradient colors based on final signal
colors = gradient_color(final_signal)
# Plot the final signal with reflection effect
fig, ax = plt.subplots(figsize=(15, 6))
# Plot the final signal
ax.plot(time, final_signal, color='blue', label='Final Signal')
# Add reflection effect
reflection_factor = 0.3
reflection = final_signal * reflection_factor
reflection_color = 'lightblue'
# Plot the reflection
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')
# Add color gradient
for i in range(len(final_signal) - 1):
ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)
# Enhance the plot
ax.set_title('Final Signal with Reflection and Color Gradient')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.legend()
ax.grid(True)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as mcolors
# Function to create a gradient color effect
def gradient_color(signal, cmap='viridis'):
norm = plt.Normalize(signal.min(), signal.max())
colors = plt.get_cmap(cmap)(norm(signal))
return colors
# Create a time array
time = np.arange(len(final_signal))
# Generate gradient colors based on final signal
colors = gradient_color(final_signal)
# Plot the final signal with reflection effect
fig, ax = plt.subplots(figsize=(15, 6))
# Create a smooth line plot with color transitions
for i in range(len(final_signal) - 1):
ax.plot(time[i:i+2], final_signal[i:i+2], color=colors[i], lw=2)
# Add the final signal plot
ax.plot(time, final_signal, color='blue', alpha=0.5, label='Final Signal')
# Add reflection effect
reflection_factor = 0.3
reflection = final_signal * reflection_factor
reflection_color = 'lightblue'
# Plot the reflection
ax.plot(time, -reflection - reflection.min(), color=reflection_color, linestyle='--', alpha=0.6, label='Signal Reflection')
# Enhance the plot
ax.set_title('PulseWavefront')
ax.set_xlabel('Time Step')
ax.set_ylabel('Amplitude')
ax.legend()
ax.grid(True)
plt.show()