{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d39297df130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d39297df1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d39297df250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d39297df2e0>", "_build": "<function ActorCriticPolicy._build at 0x7d39297df370>", "forward": "<function ActorCriticPolicy.forward at 0x7d39297df400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d39297df490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d39297df520>", "_predict": "<function ActorCriticPolicy._predict at 0x7d39297df5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d39297df640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d39297df6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d39297df760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3929786cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722884538857099095, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOyBD6krhS7rlCGvqFHKb4LJBe9OlcHPwAAgD8AAAAAAG6vPOECoLqFPma2zRGdsbToBTvtroU1AACAPwAAgD86xhq+lPb3O59rmD63Shm7eV+pvRAIbD4AAIA/AACAP1NbSj5UYtG8uZcBO0kbfbm1Kja+9YYwugAAgD8AAIA/oAlCPnTYzryw3tc4IPEVtytTQL5KiBK4AACAPwAAgD9tRDg+aVNovJJN3DtvTCW6ogjQverXBbsAAIA/AACAPzMpULwfLLg/Yw3cvd8vML0rlq28Qi6yvAAAAAAAAAAAZixjvnvqxLxa0gy6MNRRuI3mKz4HVzE5AACAPwAAgD/mKb69FDicuittJTRE0TcwwA8TOgGRn7MAAAAAAACAP2YiQj60NMC8KkgVPARwp7r8hiy+RXaBuwAAgD8AAIA/04dAPmLAGD4DYmu+NSOgvmbZnbzkmBC8AAAAAAAAAACO/5++cU4VP+0fvjyaCuS+aEf6vehG+DwAAAAAAAAAABPAhr5UlhU+CpRmPnUfOb4ILx68rJAkPQAAAAAAAAAA5gMpPq/7nT+i0wo/tDIHv31RPD5sWSc+AAAAAAAAAACavji+NuVuvJcEBbttHh+5HNLLPTIBJzoAAIA/AACAPw3+qr5OeL4+0GtvPlTdrL4RSpy9tsWKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFci22G7BiMAWyUS9iMAXSUR0CV8y6uGKyfdX2UKGgGR0Btg+C5EtulaAdLxWgIR0CV80gaWHDadX2UKGgGR0BiczOC5EtvaAdN6ANoCEdAlfQByCFsYXV9lChoBkdAcHgBzFMqSWgHS95oCEdAlfRDTfBN23V9lChoBkdAcHeCDEm6XmgHS9VoCEdAlfT0I1LrX3V9lChoBkdAb2IvW6K+BmgHTS4BaAhHQJX1vK9wm3R1fZQoaAZHQHIMPb0voNdoB0vOaAhHQJX10JzDGcZ1fZQoaAZHQG9nQokRjBloB0vdaAhHQJX3FD9fkWB1fZQoaAZHQHCU3SfDk2hoB0vnaAhHQJX3RtBOYY11fZQoaAZHQHCBMIJJGvxoB0vmaAhHQJX4q7g88tB1fZQoaAZHQHDJIU8FINFoB0vkaAhHQJX5vYQJ5Vx1fZQoaAZHQHHutqDbrTpoB00mAWgIR0CV+ppJPIn0dX2UKGgGR0BxjXPJJXhgaAdNAwFoCEdAlfqwMc6vJXV9lChoBkdAciyRRdhRZWgHTQYBaAhHQJX6rQpnYg91fZQoaAZHQHDqY0ZWJadoB0vvaAhHQJX6/QQcxTN1fZQoaAZHQGO0PEbYK6ZoB03oA2gIR0CV+4tTkyULdX2UKGgGR0Bw4C4I8hcJaAdL9mgIR0CV/EGUwBYFdX2UKGgGR0BxLOB06o2oaAdNGwFoCEdAlfyTzd1uBXV9lChoBkdAcMIWQOnVG2gHS+5oCEdAlfz+qioKlnV9lChoBkdAcYCsenyd4GgHS8toCEdAlf1cf3evZHV9lChoBkdAcWrvCuU2UGgHS/9oCEdAlf1nN9ph4XV9lChoBkdAcpMWvr4WUWgHS+FoCEdAlf4USVW0Z3V9lChoBkdAb1Kh1Tzd12gHS+BoCEdAlgA2I9C/oXV9lChoBkdAbp8rI5o4/GgHS9BoCEdAlgB7G3nZCnV9lChoBkdAbrSzv7WNFWgHS89oCEdAlgCCmZVn3HV9lChoBkdAb3mkona37WgHS9ZoCEdAlgC6DsdDIHV9lChoBkdAcbazkZJkG2gHTR4BaAhHQJYBFGy5Zr51fZQoaAZHQG9+NS619fFoB0vQaAhHQJYBWBJ7LMd1fZQoaAZHQHCXpKzzErJoB0vsaAhHQJYBmAuqWC51fZQoaAZHQHGpmzWwu/VoB0vtaAhHQJYDGpqASWZ1fZQoaAZHQHCMMj3VTaVoB0vjaAhHQJYDlYhdMTN1fZQoaAZHQEQFhhH9WIZoB0vVaAhHQJYECETQE6l1fZQoaAZHQHA9+HrQgLZoB01FAWgIR0CWBlnAIppfdX2UKGgGR0Bw2VkkKNQ1aAdLy2gIR0CWBrH7xd6cdX2UKGgGR0BxsZ7D2rXEaAdL3mgIR0CWBx6Ae7tidX2UKGgGR0Bu0rZ6D5CXaAdLyWgIR0CWB4VafSQYdX2UKGgGR0BxHgCPp6hQaAdLx2gIR0CWB9EkB0ZFdX2UKGgGR0BwALw6QvHtaAdL7WgIR0CWCCYHxBmgdX2UKGgGR0By1Aona37UaAdL32gIR0CWCUFz+3pfdX2UKGgGR0BhGNsguAZsaAdN6ANoCEdAlgnPszEaVHV9lChoBkdAb1qjKPn0TWgHS89oCEdAlguY0EX+EXV9lChoBkdAb6xVn27FsGgHS9BoCEdAlgxX/kvK2nV9lChoBkdAb0pLM9r432gHS/FoCEdAlgxlImPYF3V9lChoBkdASM+Mhouf3GgHS6poCEdAlg4rLhaTwHV9lChoBkdAcLGYB/7SA2gHS8doCEdAlg84T4+KTHV9lChoBkdAb2YweNkvsmgHS81oCEdAlhEIukDZDnV9lChoBkdAcHzlq8DjimgHS9poCEdAlhFTNt65XnV9lChoBkdAX9MQBgeA/mgHTegDaAhHQJYR1Gx2SuB1fZQoaAZHQHJ1pmdy1eBoB0vnaAhHQJYSsotthux1fZQoaAZHQG8qp++dsi1oB0vPaAhHQJYSyq2jO9p1fZQoaAZHQG8UfKp1ifBoB00EAWgIR0CWEu//vOQhdX2UKGgGR0Bg7ZzvJA+qaAdN6ANoCEdAlhPBhpg1FnV9lChoBkdAb9cnQ6ZH/mgHS+1oCEdAlhQnZ9NN8HV9lChoBkdAcR3uk1uR92gHS+5oCEdAlhV0eZG8VnV9lChoBkdAcXIPqcEvCmgHS+JoCEdAlhWWALApKHV9lChoBkdAcJ9MGorFwWgHS8poCEdAlhbEVJtix3V9lChoBkdAcHV23azu4WgHTRgBaAhHQJYXVWilBQh1fZQoaAZHQHBQvZZjhDRoB0vGaAhHQJYYF7w8W9F1fZQoaAZHQHCwOvQnhKloB0vTaAhHQJYZip3os7N1fZQoaAZHQHDQdZA6dUdoB0vRaAhHQJYZitZFG5N1fZQoaAZHQG88bp/wy7BoB00GAWgIR0CWGi4Qz1sddX2UKGgGR0BxP2VfNRm9aAdLu2gIR0CWGlHbRF7VdX2UKGgGR0BzGdLBbfP5aAdL/GgIR0CWGmP2wmmcdX2UKGgGR0ByjWq2jO9naAdLzmgIR0CWGnmwqy4XdX2UKGgGR0Bvyiqp97WvaAdL7WgIR0CWGqcNpdrwdX2UKGgGR0Bw2RkPMB6saAdL62gIR0CWHWmbb1yvdX2UKGgGR0BxHnGdZq20aAdL7mgIR0CWHaxdIGyHdX2UKGgGR0Bwg/hOxjaxaAdLwWgIR0CWHgag2606dX2UKGgGR0BfJYp6QeV+aAdN6ANoCEdAlh9YAbQ1JnV9lChoBkdAcL8z4k/r0WgHS81oCEdAliCXFLnLaHV9lChoBkdAX0X6sQumJmgHTegDaAhHQJYgppTMqz91fZQoaAZHQHLzcO9WZJFoB00PAWgIR0CWIWatLcsUdX2UKGgGR0BxLAjGDL8raAdL42gIR0CWIgh5Pdl/dX2UKGgGR0BwhhAfMfRvaAdL8mgIR0CWInghbGFSdX2UKGgGR0BxGrWQOnVHaAdL6WgIR0CWIoMJhOQAdX2UKGgGR0BzHdvFWGRFaAdNFAFoCEdAliNf9kz413V9lChoBkdAcHN3fQ8fWGgHTTkBaAhHQJYj/s0HhS91fZQoaAZHQG3WTYukDZFoB0vQaAhHQJYkcFhXr+p1fZQoaAZHQGNx/VRUFStoB03oA2gIR0CWJIJf6XSjdX2UKGgGR0BxowaUA1ejaAdNEgFoCEdAliYtkrf+CXV9lChoBkdAbnjR/mT1TWgHS9JoCEdAliclNg0CR3V9lChoBkdAcRkkEs8PnWgHS9loCEdAlidQEU0vXnV9lChoBkdAcukMmnfl62gHTQMBaAhHQJYnd3qzJIV1fZQoaAZHQG80z3qRlpZoB0vFaAhHQJYnewr1/Uh1fZQoaAZHQHAmPLLZBcBoB0vOaAhHQJYoWnJkoWp1fZQoaAZHQHCIAmReTmpoB0vPaAhHQJYpxnL7oB91fZQoaAZHQG8cTi0fHPxoB00uA2gIR0CWKhOOsDGMdX2UKGgGR0BwmVNzr/sFaAdL/WgIR0CWKkce8wpOdX2UKGgGR0Bw4+7g88s+aAdLwGgIR0CWKmKHwgDBdX2UKGgGR0BxdNF5OafBaAdLz2gIR0CWKmc+aBqcdX2UKGgGR0BxZYow22ofaAdLy2gIR0CWLauqm0mddX2UKGgGR0Bw4UahpQDWaAdL2mgIR0CWLdYKYzBRdX2UKGgGR0BxZD1VYISlaAdL0GgIR0CWLdvKEFnqdX2UKGgGR0Bw3VkGzKLbaAdLwmgIR0CWLk8PWhAXdX2UKGgGR0ByDegVXV9XaAdNFQFoCEdAli/vk/8l5XV9lChoBkdAbf9U5MlC1WgHS9RoCEdAljBkS26TXHV9lChoBkdAb58ZJCjUNWgHS81oCEdAljCzZ6D5CXV9lChoBkdAb5MWpqASWmgHS91oCEdAljFpNwiqyXV9lChoBkdAcLxVTrE9+2gHTTEBaAhHQJYz5tNzr/t1fZQoaAZHQHHf3KOktVdoB004AWgIR0CWNHs+FDfFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |