|
--- |
|
tags: |
|
- vision |
|
- ocr |
|
- trocr |
|
- pytorch |
|
license: apache-2.0 |
|
datasets: |
|
- custom-captcha-dataset |
|
metrics: |
|
- cer |
|
model_name: anuashok/ocr-captcha-v2 |
|
base_model: |
|
- microsoft/trocr-base-printed |
|
--- |
|
|
|
# anuashok/ocr-captcha-v2 |
|
|
|
This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on your custom dataset. |
|
captchas like |
|
|
|
|
|
 |
|
|
|
## Training Summary |
|
|
|
- **CER (Character Error Rate)**: 0.02025931928687196 |
|
- **Hyperparameters**: |
|
- **Learning Rate**: 1.1081459294764632e-05 |
|
- **Batch Size**: 4 |
|
- **Num Epochs**: 3 |
|
- **Warmup Ratio**: 0.07863134774153628 |
|
- **Weight Decay**: 0.06248152825021373 |
|
- **Num Beams**: 6 |
|
- **Length Penalty**: 0.5095100725173662 |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import VisionEncoderDecoderModel, TrOCRProcessor |
|
import torch |
|
from PIL import Image |
|
|
|
# Load model and processor |
|
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-v2") |
|
model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-v2") |
|
|
|
# Load image |
|
image = Image.open('path_to_your_image.jpg').convert("RGB") |
|
|
|
# Prepare image |
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
# Generate text |
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(generated_text) |