File size: 46,098 Bytes
21d5ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 |
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Omnivore model."""
import math
import warnings
from dataclasses import dataclass
from functools import lru_cache, reduce
from operator import mul
from typing import Optional, Tuple
import numpy as np
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint as checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from transformers.utils.generic import ModelOutput
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_omnivore import OmnivoreConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "OmnivoreConfig"
_FEAT_EXTRACTOR_FOR_DOC = "OmniverseFeatureExtractor"
# Base docstring
_CHECKPOINT_FOR_DOC = "anugunj/omnivore"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "anugunj/omnivore"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
OMNIVORE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"anugunj/omnivore",
# See all Omnivore models at https://huggingface.co/models?filter=omnivore
]
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
r"""Fills the input Tensor with values drawn from a truncated
Args:
normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean},
\text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for
generating the random values works best when :math:`a \leq \text{mean} \leq b`.
tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation
of the normal distribution a: the minimum cutoff value b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
# Stochastic depth implementation
# Taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the
DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop
Connect' is a different form of dropout in a separate paper... See discussion:
https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and
argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class OmnivoreDropPath(nn.Module):
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor):
return drop_path(x, self.drop_prob, self.training)
class OmnivoreLayerNorm(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor):
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class OmnivoreIm2Video(nn.Module):
"""Convert Image into a trivial video"""
def forward(self, pixel_values):
if pixel_values.ndim == 4:
return pixel_values.unsqueeze(2)
elif pixel_values.ndim == 5:
return pixel_values
else:
raise ValueError(f"Dimension incorrect {pixel_values.shape}")
class OmnivoreMLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, dropout_rate=0.0, act_layer=nn.GELU):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.linear1 = nn.Linear(in_features, hidden_features)
self.activation = act_layer()
self.linear2 = nn.Linear(hidden_features, out_features)
self.drop_out = nn.Dropout(dropout_rate)
def forward(self, hidden_state):
hidden_state = self.linear1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.drop_out(hidden_state)
hidden_state = self.linear2(hidden_state)
hidden_state = self.drop_out(hidden_state)
return hidden_state
def window_partition(input_feature, window_size):
batch_size, D, height, width, channels = input_feature.shape
input_feature = input_feature.view(
batch_size,
D // window_size[0],
window_size[0],
height // window_size[1],
window_size[1],
width // window_size[2],
window_size[2],
channels,
)
windows = input_feature.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), channels)
return windows
def window_partition_image(input_feature, window_size):
batch_size, height, width, channels = input_feature.shape
input_feature = input_feature.view(
batch_size, height // window_size[1], window_size[1], width // window_size[2], window_size[2], channels
)
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[1], window_size[2], channels)
return windows
def window_reverse(windows, windows_size, batch_size, D, height, width):
input_feature = windows.view(
batch_size,
D // windows_size[0],
height // windows_size[1],
width // windows_size[2],
windows_size[0],
windows_size[1],
windows_size[2],
-1,
)
input_feature = input_feature.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(batch_size, D, height, width, -1)
return input_feature
def get_window_size(input_size, window_size, shift_size=None):
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(input_size)):
if input_size[i] <= window_size[i]:
use_window_size[i] = input_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
class OmnivoreWindowAttention3D(nn.Module):
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=False,
qk_scale=None,
attention_dropout_rate=0.0,
projection_dropout_rate=0.0,
):
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1),
num_heads,
)
)
# get pair-wise relative position index for each token inside the window
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.queries_keys_values = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attention_dropout = nn.Dropout(attention_dropout_rate)
self.projection = nn.Linear(dim, dim)
self.projection_dropout = nn.Dropout(projection_dropout_rate)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, hidden_state, attention_mask=None):
batch_size, seq_len, channels = hidden_state.shape
queries_keys_values = (
self.queries_keys_values(hidden_state)
.reshape(batch_size, seq_len, 3, self.num_heads, channels // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
queries, keys, values = queries_keys_values[0], queries_keys_values[1], queries_keys_values[2]
queries = queries * self.scale
attention = queries @ keys.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index[:seq_len, :seq_len].reshape(-1)
].reshape(seq_len, seq_len, -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention = attention + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
nW = attention_mask.shape[0]
attention = attention.view(
batch_size // nW, nW, self.num_heads, seq_len, seq_len
) + attention_mask.unsqueeze(1).unsqueeze(0)
attention = attention.view(-1, self.num_heads, seq_len, seq_len)
attention = self.softmax(attention)
else:
attention = self.softmax(attention)
attention = self.attention_dropout(attention)
hidden_state = (attention @ values).transpose(1, 2).reshape(batch_size, seq_len, channels)
hidden_state = self.projection(hidden_state)
hidden_state = self.projection_dropout(hidden_state)
return hidden_state
class OmnivoreSwinTransformer3DLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
window_size=(2, 7, 7),
shift_size=(0, 0, 0),
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
dropout_rate=0.0,
attention_dropout_rate=0.0,
drop_path_rate=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size"
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size"
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attention = OmnivoreWindowAttention3D(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attention_dropout_rate=attention_dropout_rate,
projection_dropout_rate=dropout_rate,
)
self.drop_path = OmnivoreDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = OmnivoreMLP(
in_features=dim, hidden_features=mlp_hidden_dim, dropout_rate=dropout_rate, act_layer=act_layer
)
def forward_before(self, hidden_state, attention_mask):
batch_size, D, height, width, channels = hidden_state.shape
window_size, shift_size = get_window_size((D, height, width), self.window_size, self.shift_size)
hidden_state = self.norm1(hidden_state)
# pad feature maps to multiples of window size
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
pad_b = (window_size[1] - height % window_size[1]) % window_size[1]
pad_r = (window_size[2] - width % window_size[2]) % window_size[2]
hidden_state = F.pad(hidden_state, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, Dp, Hp, Wp, _ = hidden_state.shape
# cyclic shift
if any(i > 0 for i in shift_size):
shifted_hidden_state = torch.roll(
hidden_state, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)
)
attention_mask = attention_mask
else:
shifted_hidden_state = hidden_state
attention_mask = None
# partition windows
hidden_state_windows = window_partition(shifted_hidden_state, window_size)
# W-MSA/SW-MSA
attention_windows = self.attention(hidden_state_windows, attention_mask=attention_mask)
# merge windows
attention_windows = attention_windows.view(-1, *(window_size + (channels,)))
shifted_hidden_state = window_reverse(attention_windows, window_size, batch_size, Dp, Hp, Wp)
# reverse cyclic shift
if any(i > 0 for i in shift_size):
hidden_state = torch.roll(
shifted_hidden_state, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)
)
else:
hidden_state = shifted_hidden_state
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
hidden_state = hidden_state[:, :D, :height, :width, :].contiguous()
return hidden_state
def forward_after(self, hidden_state):
hidden_state = self.norm2(hidden_state)
hidden_state = self.mlp(hidden_state)
hidden_state = self.drop_path(hidden_state)
return hidden_state
def forward(self, hidden_state, mask_matrix, use_checkpoint=False):
shortcut = hidden_state
if use_checkpoint:
hidden_state = checkpoint.checkpoint(self.forward_before, hidden_state, mask_matrix)
else:
hidden_state = self.forward_before(hidden_state, mask_matrix)
hidden_state = shortcut + self.drop_path(hidden_state)
if use_checkpoint:
hidden_state = hidden_state + checkpoint.checkpoint(self.forward_after, hidden_state)
else:
hidden_state = hidden_state + self.forward_after(hidden_state)
return hidden_state
class OmnivorePatchMerging(nn.Module):
"""
Args:
Patch Merging Layer
dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*): Normalization layer. Default:
`nn.LayerNorm`
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, hidden_state, height=None, width=None):
if height is None:
batch_size, D, height, width, channels = hidden_state.shape
# padding
pad_input = (height % 2 == 1) or (width % 2 == 1)
if pad_input:
hidden_state = F.pad(hidden_state, (0, 0, 0, width % 2, 0, height % 2))
hidden_state0 = hidden_state[:, :, 0::2, 0::2, :]
hidden_state1 = hidden_state[:, :, 1::2, 0::2, :]
hidden_state2 = hidden_state[:, :, 0::2, 1::2, :]
hidden_state3 = hidden_state[:, :, 1::2, 1::2, :]
hidden_state = torch.cat([hidden_state0, hidden_state1, hidden_state2, hidden_state3], -1)
hidden_state = self.norm(hidden_state)
hidden_state = self.reduction(hidden_state)
return hidden_state
@lru_cache()
def compute_mask(D, height, width, window_size, shift_size, device):
img_mask = torch.zeros((1, D, height, width, 1), device=device) # 1 Dp Hp Wp 1
cnt = 0
for d in (
slice(-window_size[0]),
slice(-window_size[0], -shift_size[0]),
slice(-shift_size[0], None),
):
for h in (
slice(-window_size[1]),
slice(-window_size[1], -shift_size[1]),
slice(-shift_size[1], None),
):
for w in (
slice(-window_size[2]),
slice(-window_size[2], -shift_size[2]),
slice(-shift_size[2], None),
):
img_mask[:, d, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size)
mask_windows = mask_windows.squeeze(-1)
attention_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attention_mask = attention_mask.masked_fill(attention_mask != 0, float(-100.0)).masked_fill(
attention_mask == 0, float(0.0)
)
return attention_mask
class OmnivoreSwinTransformerStage(nn.Module):
def __init__(
self,
dim,
depth,
num_heads,
window_size=(1, 7, 7),
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
dropout_rate=0.0,
attention_dropout_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
):
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.depth = depth
# build layers
self.layers = nn.ModuleList(
[
OmnivoreSwinTransformer3DLayer(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
dropout_rate=dropout_rate,
attention_dropout_rate=attention_dropout_rate,
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
norm_layer=norm_layer,
)
for i in range(depth)
]
)
self.downsample = downsample
if self.downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
def forward(self, hidden_state, use_checkpoint=False, height=None, width=None, use_seg=False):
if use_seg:
return self.forward_seg(hidden_state, height, width)
batch_size, channels, D, height, width = hidden_state.shape
window_size, shift_size = get_window_size((D, height, width), self.window_size, self.shift_size)
hidden_state = hidden_state.permute(0, 2, 3, 4, 1)
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
Hp = int(np.ceil(height / window_size[1])) * window_size[1]
Wp = int(np.ceil(width / window_size[2])) * window_size[2]
attention_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, hidden_state.device)
for layer in self.layers:
hidden_state = layer(hidden_state, attention_mask, use_checkpoint=use_checkpoint)
hidden_state = hidden_state.view(batch_size, D, height, width, -1)
if self.downsample is not None:
hidden_state = self.downsample(hidden_state)
hidden_state = hidden_state.permute(0, 4, 1, 2, 3)
return hidden_state
def forward_seg(self, hidden_state, height, width):
Hp = int(np.ceil(height / self.window_size[1])) * self.window_size[1]
Wp = int(np.ceil(width / self.window_size[2])) * self.window_size[2]
img_mask = torch.zeros((1, Hp, Wp, 1), device=hidden_state.device) # 1 Hp Wp 1
h_slices = (
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None),
)
w_slices = (
slice(0, -self.window_size[2]),
slice(-self.window_size[2], -self.shift_size[2]),
slice(-self.shift_size[2], None),
)
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition_image(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size[1] * self.window_size[2])
attention_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attention_mask = attention_mask.masked_fill(attention_mask != 0, float(-100.0)).masked_fill(
attention_mask == 0, float(0.0)
)
for layer in self.layers:
layer.height, layer.width = height, width
if hidden_state.ndim == 4:
batch_size, D, channels, seq_len = hidden_state.shape
assert seq_len == height * width, "input feature has wrong size"
hidden_state = hidden_state.reshape(batch_size, D, channels, height, width)
hidden_state = hidden_state.permute(0, 1, 3, 4, 2)
assert hidden_state.shape[2] == height
assert hidden_state.shape[3] == width
hidden_state = layer(hidden_state, attention_mask)
if self.downsample is not None:
x_down = self.downsample(hidden_state, height, width)
Wh, Ww = (height + 1) // 2, (width + 1) // 2
return hidden_state, height, width, x_down, Wh, Ww
else:
return hidden_state, height, width, hidden_state, height, width
class OmnivorePatchEmbeddings3D(nn.Module):
"""Video to Patch Embedding"""
def __init__(
self,
patch_size=(2, 4, 4),
input_channels=3,
embed_dim=96,
norm_layer=None,
additional_variable_channels=None,
):
super().__init__()
self.patch_size = patch_size
self.input_channels = input_channels
self.embed_dim = embed_dim
self.additional_variable_channels = additional_variable_channels
self.projection = nn.Conv3d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
if additional_variable_channels:
# we create var_proj separately from proj
# this makes it convenient to ignore var_proj on downstream tasks
# where we only use RGB
self.var_projection = [
nn.Conv3d(x, embed_dim, kernel_size=patch_size, stride=patch_size)
for x in additional_variable_channels
]
self.var_projection = nn.ModuleList(self.var_projection)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def run_variable_channel_forward(self, hidden_state):
sidx = 0
out = None
for idx in range(len(self.additional_variable_channels)):
eidx = sidx + self.additional_variable_channels[idx]
c_out = self.var_projection[idx](hidden_state[:, sidx:eidx, ...])
if idx == 0:
out = c_out
else:
out += c_out
sidx = eidx
return out
def forward(self, hidden_state):
_, _, D, height, width = hidden_state.size()
if width % self.patch_size[2] != 0:
hidden_state = F.pad(hidden_state, (0, self.patch_size[2] - width % self.patch_size[2]))
if height % self.patch_size[1] != 0:
hidden_state = F.pad(hidden_state, (0, 0, 0, self.patch_size[1] - height % self.patch_size[1]))
if D % self.patch_size[0] != 0:
hidden_state = F.pad(hidden_state, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
if self.additional_variable_channels:
hidden_state_rgb = hidden_state[:, :3, ...]
hidden_state_rem = hidden_state[:, 3:, ...]
hidden_state_rgb = self.projection(hidden_state_rgb)
if hidden_state.shape[1] > 3:
hidden_state_rem = self.run_variable_channel_forward(hidden_state_rem)
hidden_state = hidden_state_rgb + hidden_state_rem
else:
hidden_state = hidden_state_rgb
else:
hidden_state = self.projection(hidden_state) # B C D Wh Ww
if self.norm is not None:
D, Wh, Ww = hidden_state.size(2), hidden_state.size(3), hidden_state.size(4)
hidden_state = hidden_state.flatten(2).transpose(1, 2)
hidden_state = self.norm(hidden_state)
hidden_state = hidden_state.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
return hidden_state
class OmnivoreSwinTransformer3DModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.im2vid = OmnivoreIm2Video()
self.num_stages = len(self.config.depths)
self.patch_size = self.config.patch_size
self.input_channels = self.config.input_channels
self.embed_dim = self.config.embed_dim
self.depths = self.config.depths
self.num_heads = self.config.num_heads
self.window_size = self.config.window_size
self.mlp_ratio = self.config.mlp_ratio
self.qkv_bias = self.config.qkv_bias
self.qk_scale = self.config.qk_scale
self.dropout_rate = self.config.dropout_rate
self.attention_dropout_rate = self.config.attention_dropout_rate
self.drop_path_rate = self.config.drop_path_rate
self.norm_layer = nn.LayerNorm
self.patch_norm = self.config.patch_norm
self.frozen_stages = self.config.frozen_stages
self.depth_patch_embed_separate_params = True
self.depth_mode = self.config.depth_mode
depth_chans = None
assert self.input_channels == 3, "Only 3 channels supported"
# split image into non-overlapping patches
self.patch_embed = OmnivorePatchEmbeddings3D(
patch_size=self.patch_size,
input_channels=self.input_channels,
embed_dim=self.embed_dim,
norm_layer=self.norm_layer if self.patch_norm else None,
)
if self.depth_mode is not None:
msg = f"Using depth mode {self.depth_mode}"
logger.info(msg)
assert self.depth_mode in ["separate_d_tokens", "summed_rgb_d_tokens", "rgbd"]
if self.depth_mode in ["separate_d_tokens", "summed_rgb_d_tokens"]:
depth_chans = 1
assert self.depth_patch_embed_separate_params, "separate tokenization needs separate parameters"
if self.depth_mode == "separate_d_tokens":
raise NotImplementedError()
else:
assert self.depth_mode == "rgbd"
depth_chans = 4
self.depth_patch_embed_separate_params = self.depth_patch_embed_separate_params
if self.depth_patch_embed_separate_params:
self.depth_patch_embed = OmnivorePatchEmbeddings3D(
patch_size=self.patch_size,
input_channels=depth_chans,
embed_dim=self.embed_dim,
norm_layer=self.norm_layer if self.patch_norm else None,
)
else:
del self.patch_embed
assert depth_chans == 4
logger.info("Certain channels of patch projection may not be used in forward pass")
logger.info("Make sure config.DISTRIBUTED.FIND_UNUSED_PARAMETERS is set to True")
self.patch_embed = OmnivorePatchEmbeddings3D(
patch_size=self.patch_size,
input_channels=3,
embed_dim=self.embed_dim,
additional_variable_channels=[1],
norm_layer=self.norm_layer if self.patch_norm else None,
)
self.pos_drop = nn.Dropout(p=self.dropout_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
] # stochastic depth decay rule
# build stages
self.stages = nn.ModuleList()
for stage in range(self.num_stages):
stage_module = OmnivoreSwinTransformerStage(
dim=int(self.embed_dim * 2**stage),
depth=self.depths[stage],
num_heads=self.num_heads[stage],
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
qk_scale=self.qk_scale,
dropout_rate=self.dropout_rate,
attention_dropout_rate=self.attention_dropout_rate,
drop_path_rate=dpr[sum(self.depths[:stage]) : sum(self.depths[: stage + 1])],
norm_layer=self.norm_layer,
downsample=OmnivorePatchMerging if stage < self.num_stages - 1 else None,
)
self.stages.append(stage_module)
self.num_features = int(self.embed_dim * 2 ** (self.num_stages - 1))
self.norm = self.norm_layer(self.num_features)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1:
self.pos_drop.eval()
for i in range(0, self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def _apply_norm(self, x):
x = x.permute(0, 2, 3, 4, 1)
x = self.norm(x)
x = x.permute(0, 4, 1, 2, 3)
return x
def forward_intermediate_features(self, stage_outputs, out_feat_keys):
"""
Inputs
- stage_outputs: list of features without self.norm() applied to them
- out_feat_keys: list of feature names (str)
specified as "stage<int>" for feature with norm or "interim<int>" for feature without norm
"""
out_features = []
for key in out_feat_keys:
if key.startswith("stage"):
rep = "stage"
elif key.startswith("interim"):
rep = "interim"
else:
raise ValueError(f"Invalid key {key}")
idx = int(key.replace(rep, ""))
feat = stage_outputs[idx]
if rep == "stage":
feat = self._apply_norm(feat)
out_features.append(feat)
return out_features
def get_patch_embedding(self, hidden_state):
assert hidden_state.ndim == 5
has_depth = hidden_state.shape[1] == 4
if has_depth:
if self.depth_mode in ["summed_rgb_d_tokens"]:
hidden_state_rgb = hidden_state[:, :3, ...]
hidden_state_d = hidden_state[:, 3:, ...]
hidden_state_d = self.depth_patch_embed(hidden_state_d)
hidden_state_rgb = self.patch_embed(hidden_state_rgb)
# sum the two sets of tokens
hidden_state = hidden_state_rgb + hidden_state_d
elif self.depth_mode == "rgbd":
if self.depth_patch_embed_separate_params:
hidden_state = self.depth_patch_embed(hidden_state)
else:
hidden_state = self.patch_embed(hidden_state)
else:
logger.info("Depth mode %s not supported" % self.depth_mode)
raise NotImplementedError()
else:
hidden_state = self.patch_embed(hidden_state)
return hidden_state
def forward(
self, hidden_state, out_feat_keys=None, use_checkpoint=False, output_hidden_states=False, return_dict=True
):
all_hidden_states = () if output_hidden_states else None
hidden_state = self.im2vid(hidden_state)
hidden_state = self.get_patch_embedding(hidden_state)
hidden_state = self.pos_drop(hidden_state)
stage_outputs = []
for stage in self.stages:
hidden_state = stage(hidden_state.contiguous(), use_checkpoint=use_checkpoint)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
stage_outputs.append(hidden_state)
if out_feat_keys is not None and len(out_feat_keys) > 0:
final_hidden_state = self.forward_intermediate_features(stage_outputs, out_feat_keys)
else:
hidden_state = self._apply_norm(hidden_state)
# Mean over the spatiotemporal dimensions
hidden_state = torch.mean(hidden_state, [-3, -2, -1])
final_hidden_state = hidden_state
if not return_dict:
return tuple(v for v in [final_hidden_state, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=final_hidden_state, hidden_states=all_hidden_states)
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(OmnivoreSwinTransformer3DModel, self).train(mode)
self._freeze_stages()
class OmnivoreImageClassificationHead(nn.Module):
def __init__(self, in_features=1024, out_features=1000, bias=True):
super().__init__()
self.image_head = nn.Linear(in_features, out_features, bias)
def forward(self, hidden_state):
logits = self.image_head(hidden_state)
return logits
class OmnivoreVideoClassificationHead(nn.Module):
def __init__(self, in_features=1024, out_features=400, bias=True):
super().__init__()
self.video_head = nn.Linear(in_features, out_features, bias)
self.dropout = nn.Dropout(p=0.5)
def forward(self, hidden_state):
logits = self.video_head(hidden_state)
logits = self.dropout(logits)
return logits
class OmnivoreRGBDClassificationHead(nn.Module):
def __init__(self, in_features=1024, out_features=19, bias=True):
super().__init__()
self.rgbd_head = nn.Linear(in_features, out_features, bias)
def forward(self, hidden_state):
logits = self.rgbd_head(hidden_state)
return logits
class OmnivorePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = OmnivoreConfig
base_model_prefix = "omnivore"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, OmnivoreModel):
module.gradient_checkpointing = value
OMNIVORE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`OmnivoreConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OMNIVORE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoFeatureExtractor`]. See
[`AutoFeatureExtractor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Omnivore model outputting raw features without any specific head on top.",
OMNIVORE_START_DOCSTRING,
)
class OmnivoreModel(OmnivorePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = OmnivoreSwinTransformer3DModel(config)
self.post_init()
@add_start_docstrings_to_model_forward(OMNIVORE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.model(pixel_values)
last_hidden_state = outputs[0]
# global average pooling, (N, C, D, H, W) -> (N, C)
pooled_output = last_hidden_state.mean([-1])
if not return_dict:
return (last_hidden_state, pooled_output) + outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
Omnivore Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
OMNIVORE_START_DOCSTRING,
)
class OmnivoreForImageClassification(OmnivorePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_image_labels = config.num_image_labels or config.num_labels
self.num_video_labels = config.num_video_labels or config.num_labels
self.num_rgbd_labels = config.num_rgbd_labels or config.num_labels
self.omnivore = OmnivoreModel(config)
self.image_classifier = OmnivoreImageClassificationHead(config.head_dim_in, self.num_image_labels)
self.rgbd_classifier = OmnivoreRGBDClassificationHead(config.head_dim_in, self.num_rgbd_labels)
self.video_classifier = OmnivoreVideoClassificationHead(config.head_dim_in, self.num_video_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OMNIVORE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
pixel_input_type: str = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
pixel_input_type (`str`):
Which classification head to use for the classification of given pixel_values
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.omnivore(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
sequence_output = outputs[0]
logits = None
if pixel_input_type == "image":
logits = self.image_classifier(sequence_output)
if pixel_input_type == "video":
logits = self.video_classifier(sequence_output)
if pixel_input_type == "rgbd":
logits = self.rgbd_classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
) |