|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Omnivore model configuration""" |
|
|
|
from torch import nn |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
OMNIVORE_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"anugunj/omnivore": "https://huggingface.co/anugunj/omnivore/resolve/main/config.json", |
|
} |
|
|
|
|
|
class OmnivoreConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`OmnivoreModel`]. It is used to instantiate an |
|
Omnivore model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Omnivore |
|
[anugunj/omnivore](https://huggingface.co/anugunj/omnivore) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
input_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
patch_size (`int` | `List[int]`, *optional*, defaults to [4, 4, 4]): |
|
Patch size to use in the patch embedding layer. |
|
embed_dim (`int`, *optional*, defaults to 96): |
|
Number of linear projection output channels. |
|
depths (`List[int]`, *optional*, defaults to [2, 2, 6, 2],): |
|
Depth (number of layers) for each stage. |
|
num_heads (`List[int]`, *optional*, defaults to [3, 6, 12, 24]): |
|
Number of attention head of each stage. |
|
window_size (`int`, *optional*, defaults to 7) |
|
Size of the window used by swin transformer in the model, |
|
mlp_ratios (`float`, *optional*, defaults to 4.0): |
|
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the |
|
encoder blocks. |
|
attention_dropout_rate (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
dropout_rate (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the patch embeddings probabilities and projections in attention. |
|
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`): |
|
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. |
|
qkv_bias (`bool`, *optional*, defaults to True): |
|
The bias bool for query, key and value in attentions |
|
qk_scale (`bool`, *optional*, defaults to None): |
|
Override default qk scale of head_dim ** -0.5 if set. |
|
norm_layer (`nn.Module`, *optional*, defaults to nn.LayerNorm): |
|
Normalization layer for the model |
|
patch_norm (`bool`, *optional*, defaults to False): |
|
If True, add normalization after patch embedding. |
|
frozen_stages (`int`, *optional*, defaults to -1): |
|
Stages to be frozen (stop grad and set eval mode) -1 means not freezing any parameters. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
|
Example: |
|
```python |
|
>>> from transformers import OmnivoreModel, OmnivoreConfig |
|
|
|
>>> # Initializing a Omnivore omnivore-tiny-224 style configuration |
|
>>> configuration = OmnivoreConfig() |
|
>>> # Initializing a model from the omnivore-tiny-224 style configuration |
|
>>> model = OmnivoreModel(configuration) |
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "omnivore" |
|
|
|
def __init__( |
|
self, |
|
input_channels=3, |
|
patch_size=[2, 4, 4], |
|
embed_dim=96, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=(8, 7, 7), |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
dropout_rate=0.0, |
|
attention_dropout_rate=0.0, |
|
drop_path_rate=0.3, |
|
patch_norm=True, |
|
frozen_stages=-1, |
|
depth_mode="summed_rgb_d_tokens", |
|
initializer_range=0.02, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.input_channels = input_channels |
|
self.patch_size = patch_size |
|
self.embed_dim = embed_dim |
|
self.depths = depths |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
self.qkv_bias = qkv_bias |
|
self.qk_scale = qk_scale |
|
self.dropout_rate = dropout_rate |
|
self.attention_dropout_rate = attention_dropout_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.patch_norm = patch_norm |
|
self.frozen_stages = frozen_stages |
|
self.initializer_range = initializer_range |
|
self.head_dim_in = embed_dim * 8 |
|
self.depth_mode = depth_mode |
|
self.num_image_labels = 1000 |
|
self.num_video_labels = 400 |
|
self.num_rgbd_labels = 19 |
|
|