metadata
language:
- or
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-or
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_7_0
name: Common Voice 7
args: or
metrics:
- type: wer
value: 47.31
name: Test WER
- name: Test CER
type: cer
value: 11.9
wav2vec2-large-xls-r-300m-or
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.6618
- Wer: 0.5166
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 240
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.0493 | 23.53 | 400 | 2.9728 | 1.0 |
0.5306 | 47.06 | 800 | 1.2895 | 0.6138 |
0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 |
0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 |
0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 |
0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 |
0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 |
0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 |
0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 |
0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-or"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର"
Eval results on Common Voice 7 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
51.92 | 47.31 |