anzeo's picture
loha_fine_tuned_boolq
dc3dc96 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: google-bert/bert-base-uncased
metrics:
  - accuracy
  - f1
model-index:
  - name: loha_fine_tuned_boolq
    results: []

loha_fine_tuned_boolq

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5655
  • Accuracy: 0.7778
  • F1: 0.6806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6686 4.1667 50 0.6058 0.7778 0.6806
0.661 8.3333 100 0.5835 0.7778 0.6806
0.66 12.5 150 0.5765 0.7778 0.6806
0.6685 16.6667 200 0.5708 0.7778 0.6806
0.6634 20.8333 250 0.5677 0.7778 0.6806
0.6573 25.0 300 0.5668 0.7778 0.6806
0.6623 29.1667 350 0.5661 0.7778 0.6806
0.6583 33.3333 400 0.5655 0.7778 0.6806

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1