OpenCLIP
PyTorch
clip
DFN5B-CLIP-ViT-H-14 / README.md
vaishaal's picture
Update README.md
2354f7b
|
raw
history blame
3.89 kB
metadata
license: other
license_name: apple-sample-code-license
license_link: LICENSE

A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-5B. Data Filtering Networks (DFNs) are small used to automatically filter large pools of uncurated data. This model was trained on 5B images that were filtered from a pool of 43B uncurated image-text pairs (12.8B image-text pairs from CommonPool-12.8B + 30B additional public image-text pairs).

This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn). These weights are directly usable in OpenCLIP (image + text).

Model Details

Model Metrics

Eval Dataset Metric
ImageNet 1k 0.8344
Caltech-101 0.954935
CIFAR-10 0.9878
CIFAR-100 0.9051
CLEVR Counts 0.2966
CLEVR Distance 0.2124
Country211 0.343981
Describable Textures 0.706383
EuroSAT 0.654815
FGVC Aircraft 0.714055
Food-101 0.956792
GTSRB 0.677514
ImageNet Sketch 0.727308
ImageNet v2 0.773
ImageNet-A 0.6988
ImageNet-O 0.381
ImageNet-R 0.929367
KITTI Vehicle Distance 0.336146
MNIST 0.8579
ObjectNet 0.681275
Oxford Flowers-102 0.899534
Oxford-IIIT Pet 0.965515
Pascal VOC 2007 0.818309
PatchCamelyon 0.653625
Rendered SST2 0.546403
RESISC45 0.750476
Stanford Cars 0.957592
STL-10 0.989
SUN397 0.769149
SVHN 0.676168
Flickr 0.8645
MSCOCO 0.631112
WinoGAViL 0.556329
iWildCam 0.205549
Camelyon17 0.705034
FMoW 0.207482
Dollar Street 0.699766
GeoDE 0.928184
Eval Dataset Metric
:----------------------- ---------:

Model Usage

With OpenCLIP

import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer 

model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14')
tokenizer = get_tokenizer('hf-hub:apple/DFN5B-CLIP-ViT-H-14)

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)

labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features = F.normalize(image_features, dim=-1)
    text_features = F.normalize(text_features, dim=-1)

    text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)

zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)

Citation

@article{fang2023data,
  title={Data Filtering Networks},
  author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
  journal={arXiv preprint arXiv:2309.17425},
  year={2023}
}