DepthPro-hf / README.md
pcuenq's picture
pcuenq HF staff
AMLR license (#5)
de816c8 verified
---
library_name: transformers
license: apple-amlr
tags:
- vision
- depth-estimation
pipeline_tag: depth-estimation
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# DepthPro: Monocular Depth Estimation
![image/png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_pro_teaser.png)
This is the transformers version of DepthPro, a foundation model for zero-shot metric monocular depth estimation, designed to generate high-resolution depth maps with remarkable sharpness and fine-grained details. For the checkpoint compatible with the original codebase, please check [this repo](https://huggingface.co/apple/DepthPro).
## Table of Contents
- [DepthPro: Monocular Depth Estimation](#depthpro-monocular-depth-estimation)
- [Table of Contents](#table-of-contents)
- [Model Details](#model-details)
- [Model Sources](#model-sources)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
- [Training Details](#training-details)
- [Training Data](#training-data)
- [Preprocessing](#preprocessing)
- [Training Hyperparameters](#training-hyperparameters)
- [Evaluation](#evaluation)
- [Model Architecture and Objective](#model-architecture-and-objective)
- [Citation](#citation)
- [Model Card Authors](#model-card-authors)
## Model Details
DepthPro is a foundation model for zero-shot metric monocular depth estimation, designed to generate high-resolution depth maps with remarkable sharpness and fine-grained details. It employs a multi-scale Vision Transformer (ViT)-based architecture, where images are downsampled, divided into patches, and processed using a shared Dinov2 encoder. The extracted patch-level features are merged, upsampled, and refined using a DPT-like fusion stage, enabling precise depth estimation.
The abstract from the paper is the following:
> We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions.
This is the model card of a 🤗 [transformers](https://huggingface.co/docs/transformers/index) model that has been pushed on the Hub.
- **Developed by:** Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, Vladlen Koltun.
- **Model type:** [DepthPro](https://huggingface.co/docs/transformers/main/en/model_doc/depth_pro)
- **License:** Apple-ASCL
### Model Sources
<!-- Provide the basic links for the model. -->
- **HF Docs:** [DepthPro](https://huggingface.co/docs/transformers/main/en/model_doc/depth_pro)
- **Repository:** https://github.com/apple/ml-depth-pro
- **Paper:** https://arxiv.org/abs/2410.02073
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import requests
from PIL import Image
import torch
from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
url = 'https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg'
image = Image.open(requests.get(url, stream=True).raw)
image_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
inputs = image_processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
post_processed_output = image_processor.post_process_depth_estimation(
outputs, target_sizes=[(image.height, image.width)],
)
field_of_view = post_processed_output[0]["field_of_view"]
focal_length = post_processed_output[0]["focal_length"]
depth = post_processed_output[0]["predicted_depth"]
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth = depth * 255.
depth = depth.detach().cpu().numpy()
depth = Image.fromarray(depth.astype("uint8"))
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The DepthPro model was trained on the following datasets:
![image/jpeg](assets/depth_pro_datasets.png)
### Preprocessing
Images go through the following preprocessing steps:
- rescaled by `1/225.`
- normalized with `mean=[0.5, 0.5, 0.5]` and `std=[0.5, 0.5, 0.5]`
- resized to `1536x1536` pixels
### Training Hyperparameters
![image/jpeg](assets/depth_pro_training_hyper_parameters.png)
## Evaluation
![image/png](assets/depth_pro_results.png)
### Model Architecture and Objective
![image/png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_pro_architecture.png)
The `DepthProForDepthEstimation` model uses a `DepthProEncoder`, for encoding the input image and a `FeatureFusionStage` for fusing the output features from encoder.
The `DepthProEncoder` further uses two encoders:
- `patch_encoder`
- Input image is scaled with multiple ratios, as specified in the `scaled_images_ratios` configuration.
- Each scaled image is split into smaller **patches** of size `patch_size` with overlapping areas determined by `scaled_images_overlap_ratios`.
- These patches are processed by the **`patch_encoder`**
- `image_encoder`
- Input image is also rescaled to `patch_size` and processed by the **`image_encoder`**
Both these encoders can be configured via `patch_model_config` and `image_model_config` respectively, both of which are separate `Dinov2Model` by default.
Outputs from both encoders (`last_hidden_state`) and selected intermediate states (`hidden_states`) from **`patch_encoder`** are fused by a `DPT`-based `FeatureFusionStage` for depth estimation.
The network is supplemented with a focal length estimation head. A small convolutional head ingests frozen features from the depth estimation network and task-specific features from a separate ViT image encoder to predict the horizontal angular field-of-view.
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@misc{bochkovskii2024depthprosharpmonocular,
title={Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
author={Aleksei Bochkovskii and Amaël Delaunoy and Hugo Germain and Marcel Santos and Yichao Zhou and Stephan R. Richter and Vladlen Koltun},
year={2024},
eprint={2410.02073},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.02073},
}
```
## Model Card Authors
[Armaghan Shakir](https://huggingface.co/geetu040)