Add generate module and update README.
#1
by
mahyar-najibi
- opened
- README.md +12 -38
- modeling_openelm.py +3 -3
README.md
CHANGED
@@ -8,9 +8,9 @@ license_link: LICENSE
|
|
8 |
|
9 |
*Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, Mohammad Rastegari*
|
10 |
|
11 |
-
We introduce **OpenELM**, a family of **Open
|
12 |
|
13 |
-
Our pre-training dataset contains RefinedWeb, deduplicated PILE, a subset of RedPajama, and a subset of Dolma v1.6, totaling approximately 1.8 trillion tokens.
|
14 |
|
15 |
|
16 |
|
@@ -28,7 +28,7 @@ Additional arguments to the hugging face generate function can be passed via `ge
|
|
28 |
```
|
29 |
python generate_openelm.py --model apple/OpenELM-450M --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
|
30 |
```
|
31 |
-
Alternatively,
|
32 |
```
|
33 |
python generate_openelm.py --model apple/OpenELM-450M --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model [SMALLER_MODEL]
|
34 |
```
|
@@ -105,11 +105,10 @@ pip install tokenizers>=0.15.2 transformers>=4.38.2 sentencepiece>=0.2.0
|
|
105 |
|
106 |
```bash
|
107 |
|
108 |
-
# OpenELM-
|
109 |
-
hf_model=
|
110 |
|
111 |
-
# this flag is needed because lm-eval-harness set add_bos_token to False by default, but OpenELM uses
|
112 |
-
tokenizer=meta-llama/Llama-2-7b-hf
|
113 |
add_bos_token=True
|
114 |
batch_size=1
|
115 |
|
@@ -118,7 +117,7 @@ mkdir lm_eval_output
|
|
118 |
shot=0
|
119 |
task=arc_challenge,arc_easy,boolq,hellaswag,piqa,race,winogrande,sciq,truthfulqa_mc2
|
120 |
lm_eval --model hf \
|
121 |
-
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token}
|
122 |
--tasks ${task} \
|
123 |
--device cuda:0 \
|
124 |
--num_fewshot ${shot} \
|
@@ -128,7 +127,7 @@ lm_eval --model hf \
|
|
128 |
shot=5
|
129 |
task=mmlu,winogrande
|
130 |
lm_eval --model hf \
|
131 |
-
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token}
|
132 |
--tasks ${task} \
|
133 |
--device cuda:0 \
|
134 |
--num_fewshot ${shot} \
|
@@ -138,7 +137,7 @@ lm_eval --model hf \
|
|
138 |
shot=25
|
139 |
task=arc_challenge,crows_pairs_english
|
140 |
lm_eval --model hf \
|
141 |
-
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token}
|
142 |
--tasks ${task} \
|
143 |
--device cuda:0 \
|
144 |
--num_fewshot ${shot} \
|
@@ -148,7 +147,7 @@ lm_eval --model hf \
|
|
148 |
shot=10
|
149 |
task=hellaswag
|
150 |
lm_eval --model hf \
|
151 |
-
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token}
|
152 |
--tasks ${task} \
|
153 |
--device cuda:0 \
|
154 |
--num_fewshot ${shot} \
|
@@ -160,30 +159,5 @@ lm_eval --model hf \
|
|
160 |
|
161 |
## Bias, Risks, and Limitations
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
## Citation
|
166 |
-
|
167 |
-
If you find our work useful, please cite:
|
168 |
-
|
169 |
-
```BibTex
|
170 |
-
@article{mehtaOpenELMEfficientLanguage2024,
|
171 |
-
title = {{OpenELM}: {An} {Efficient} {Language} {Model} {Family} with {Open} {Training} and {Inference} {Framework}},
|
172 |
-
shorttitle = {{OpenELM}},
|
173 |
-
url = {https://arxiv.org/abs/2404.14619v1},
|
174 |
-
language = {en},
|
175 |
-
urldate = {2024-04-24},
|
176 |
-
journal = {arXiv.org},
|
177 |
-
author = {Mehta, Sachin and Sekhavat, Mohammad Hossein and Cao, Qingqing and Horton, Maxwell and Jin, Yanzi and Sun, Chenfan and Mirzadeh, Iman and Najibi, Mahyar and Belenko, Dmitry and Zatloukal, Peter and Rastegari, Mohammad},
|
178 |
-
month = apr,
|
179 |
-
year = {2024},
|
180 |
-
}
|
181 |
-
|
182 |
-
@inproceedings{mehta2022cvnets,
|
183 |
-
author = {Mehta, Sachin and Abdolhosseini, Farzad and Rastegari, Mohammad},
|
184 |
-
title = {CVNets: High Performance Library for Computer Vision},
|
185 |
-
year = {2022},
|
186 |
-
booktitle = {Proceedings of the 30th ACM International Conference on Multimedia},
|
187 |
-
series = {MM '22}
|
188 |
-
}
|
189 |
-
```
|
|
|
8 |
|
9 |
*Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, Mohammad Rastegari*
|
10 |
|
11 |
+
We introduce **OpenELM**, a family of **Open**-source **E**fficient **L**anguage **M**odels. We release both pretrained and instruction tuned models with 270M, 450M, 1.1B and 3B parameters.
|
12 |
|
13 |
+
Our pre-training dataset contains RefinedWeb, deduplicated PILE, a subset of RedPajama, and a subset of Dolma v1.6, totaling approximately 1.8 trillion tokens.
|
14 |
|
15 |
|
16 |
|
|
|
28 |
```
|
29 |
python generate_openelm.py --model apple/OpenELM-450M --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
|
30 |
```
|
31 |
+
Alternatively, model-wise speculative generation with an [assistive model](https://huggingface.co/blog/assisted-generation) can be also tried by passing a smaller model model through the `assistant_model` argument, for example:
|
32 |
```
|
33 |
python generate_openelm.py --model apple/OpenELM-450M --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model [SMALLER_MODEL]
|
34 |
```
|
|
|
105 |
|
106 |
```bash
|
107 |
|
108 |
+
# OpenELM-270M
|
109 |
+
hf_model=OpenELM-270M
|
110 |
|
111 |
+
# this flag is needed because lm-eval-harness set add_bos_token to False by default, but OpenELM uses LLaMa tokenizer which requires add_bos_token to be True
|
|
|
112 |
add_bos_token=True
|
113 |
batch_size=1
|
114 |
|
|
|
117 |
shot=0
|
118 |
task=arc_challenge,arc_easy,boolq,hellaswag,piqa,race,winogrande,sciq,truthfulqa_mc2
|
119 |
lm_eval --model hf \
|
120 |
+
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token} \
|
121 |
--tasks ${task} \
|
122 |
--device cuda:0 \
|
123 |
--num_fewshot ${shot} \
|
|
|
127 |
shot=5
|
128 |
task=mmlu,winogrande
|
129 |
lm_eval --model hf \
|
130 |
+
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token} \
|
131 |
--tasks ${task} \
|
132 |
--device cuda:0 \
|
133 |
--num_fewshot ${shot} \
|
|
|
137 |
shot=25
|
138 |
task=arc_challenge,crows_pairs_english
|
139 |
lm_eval --model hf \
|
140 |
+
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token} \
|
141 |
--tasks ${task} \
|
142 |
--device cuda:0 \
|
143 |
--num_fewshot ${shot} \
|
|
|
147 |
shot=10
|
148 |
task=hellaswag
|
149 |
lm_eval --model hf \
|
150 |
+
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token} \
|
151 |
--tasks ${task} \
|
152 |
--device cuda:0 \
|
153 |
--num_fewshot ${shot} \
|
|
|
159 |
|
160 |
## Bias, Risks, and Limitations
|
161 |
|
162 |
+
Our OpenELM models are not trained with any safety guarantees, the model outputs can be potentially inaccurate, harmful or contain biased information. produce inaccurate, biased or other objectionable responses to user prompts. Therefore, users and developers should conduct extensive safety testing and filtering suited to their specific needs.
|
163 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_openelm.py
CHANGED
@@ -783,7 +783,7 @@ class OpenELMModel(OpenELMPreTrainedModel):
|
|
783 |
)
|
784 |
|
785 |
if self.config._attn_implementation == "sdpa" and attention_mask is not None:
|
786 |
-
# For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
787 |
is_tracing = (
|
788 |
torch.jit.is_tracing()
|
789 |
or isinstance(input_tensor, torch.fx.Proxy)
|
@@ -967,7 +967,7 @@ class OpenELMForCausalLM(OpenELMPreTrainedModel):
|
|
967 |
input_ids = input_ids[:, past_length:]
|
968 |
position_ids = position_ids[:, past_length:]
|
969 |
|
970 |
-
# we should only keep a `cache_position` in generate, and do +=1.
|
971 |
# same goes for position ids. Could also help with continued generation.
|
972 |
cache_position = torch.arange(
|
973 |
past_length,
|
@@ -981,7 +981,7 @@ class OpenELMForCausalLM(OpenELMPreTrainedModel):
|
|
981 |
else:
|
982 |
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
983 |
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
984 |
-
#
|
985 |
model_inputs = {"input_ids": input_ids.contiguous()}
|
986 |
|
987 |
model_inputs.update(
|
|
|
783 |
)
|
784 |
|
785 |
if self.config._attn_implementation == "sdpa" and attention_mask is not None:
|
786 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
787 |
is_tracing = (
|
788 |
torch.jit.is_tracing()
|
789 |
or isinstance(input_tensor, torch.fx.Proxy)
|
|
|
967 |
input_ids = input_ids[:, past_length:]
|
968 |
position_ids = position_ids[:, past_length:]
|
969 |
|
970 |
+
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
|
971 |
# same goes for position ids. Could also help with continued generation.
|
972 |
cache_position = torch.arange(
|
973 |
past_length,
|
|
|
981 |
else:
|
982 |
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
983 |
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
984 |
+
# TODO: use `next_tokens` directly instead.
|
985 |
model_inputs = {"input_ids": input_ids.contiguous()}
|
986 |
|
987 |
model_inputs.update(
|