liputan6-pt-pl5 / README.md
apwic's picture
End of training
48906d4 verified
---
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
datasets:
- id_liputan6
metrics:
- rouge
model-index:
- name: liputan6-pt-pl5
results:
- task:
name: Summarization
type: summarization
dataset:
name: id_liputan6 canonical
type: id_liputan6
config: canonical
split: validation
args: canonical
metrics:
- name: Rouge1
type: rouge
value: 29.4984
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# liputan6-pt-pl5
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7526
- Rouge1: 29.4984
- Rouge2: 14.2115
- Rougel: 24.9259
- Rougelsum: 27.5126
- Gen Len: 59.201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 4.309 | 1.0 | 63 | 3.4072 | 20.861 | 8.8494 | 18.3118 | 19.3333 | 41.853 |
| 3.6184 | 2.0 | 126 | 3.1460 | 25.8149 | 9.9065 | 21.2242 | 23.6534 | 51.44 |
| 3.3773 | 3.0 | 189 | 2.9716 | 27.0263 | 11.563 | 22.6018 | 25.0075 | 55.215 |
| 3.1793 | 4.0 | 252 | 2.8266 | 28.6871 | 12.9802 | 24.038 | 26.6558 | 52.119 |
| 3.0027 | 5.0 | 315 | 2.7526 | 29.5518 | 13.5408 | 24.834 | 27.6096 | 51.956 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1