BE_XTTS_V2_25epoch3Dataset / train_gpt_xtts.py
archivartaunik's picture
Initial upload of GPT_XTTS_V2 model files H100 NVL TF 32 - на ўсе 3 датасэты 18 хвілін за эпоху
56dd203 verified
import os
import gc
import torch
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
from dataclasses import dataclass, field
from typing import Optional
from transformers import HfArgumentParser
import argparse
def create_xtts_trainer_parser():
parser = argparse.ArgumentParser(description="Arguments for XTTS Trainer")
parser.add_argument("--output_path", type=str, required=True,
help="Path to pretrained + checkpoint model")
parser.add_argument("--metadatas", nargs='+', type=str, required=True,
help="train_csv_path,eval_csv_path,language")
parser.add_argument("--num_epochs", type=int, default=1,
help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=1,
help="Mini batch size")
parser.add_argument("--grad_acumm", type=int, default=1,
help="Grad accumulation steps")
parser.add_argument("--max_audio_length", type=int, default=255995,
help="Max audio length")
parser.add_argument("--max_text_length", type=int, default=200,
help="Max text length")
parser.add_argument("--weight_decay", type=float, default=1e-2,
help="Weight decay")
parser.add_argument("--lr", type=float, default=5e-6,
help="Learning rate")
parser.add_argument("--save_step", type=int, default=5000,
help="Save step")
parser.add_argument("--tf32_matmul", type=bool, default=False,
help="Enable or disable Torch TF32 MatMul")
parser.add_argument("--tf32_cudnn", type=bool, default=False,
help="Enable or disable Torch TF32 CUDNN")
return parser
def train_gpt(metadatas, num_epochs, batch_size, grad_acumm, output_path, max_audio_length, max_text_length, lr, weight_decay, save_step):
# Logging parameters
RUN_NAME = "GPT_XTTS_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# Set here the path that the checkpoints will be saved. Default: ./run/training/
# OUT_PATH = os.path.join(output_path, "run", "training")
OUT_PATH = output_path
# Training Parameters
# for multi-gpu training please make it False
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True
START_WITH_EVAL = False # if True it will star with evaluation
BATCH_SIZE = batch_size # set here the batch size
GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps
# Define here the dataset that you want to use for the fine-tuning on.
DATASETS_CONFIG_LIST = []
for metadata in metadatas:
train_csv, eval_csv, language = metadata.split(",")
print(train_csv, eval_csv, language)
config_dataset = BaseDatasetConfig(
formatter="coqui",
dataset_name="ft_dataset",
path=os.path.dirname(train_csv),
meta_file_train=os.path.basename(train_csv),
meta_file_val=os.path.basename(eval_csv),
language=language,
)
DATASETS_CONFIG_LIST.append(config_dataset)
# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(
OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(
CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(
CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files(
[MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(
TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(
XTTS_CHECKPOINT_LINK)) # model.pth file
XTTS_CONFIG_FILE = os.path.join(
# config.json file
CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK))
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE):
print(" > Downloading XTTS v2.0 tokenizer!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
if not os.path.isfile(XTTS_CHECKPOINT):
print(" > Downloading XTTS v2.0 checkpoint!")
ModelManager._download_model_files(
[XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
if not os.path.isfile(XTTS_CONFIG_FILE):
print(" > Downloading XTTS v2.0 config!")
ModelManager._download_model_files(
[XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
# init args and config
model_args = GPTArgs(
max_conditioning_length=264600, # 12 secs
min_conditioning_length=88200, # 4 secs
debug_loading_failures=False,
max_wav_length=max_audio_length, # ~11.6 seconds
max_text_length=max_text_length,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
# checkpoint path of the model that you want to fine-tune
xtts_checkpoint=XTTS_CHECKPOINT,
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(
sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig()
config.load_json(XTTS_CONFIG_FILE)
config.epochs = num_epochs
config.output_path = OUT_PATH
config.model_args = model_args
config.run_name = RUN_NAME
config.project_name = PROJECT_NAME
config.run_description = """
GPT XTTS training
""",
config.dashboard_logger = DASHBOARD_LOGGER
config.logger_uri = LOGGER_URI
config.audio = audio_config
config.batch_size = BATCH_SIZE
config.num_loader_workers = 4
config.eval_split_max_size = 256
config.print_step = 50
config.plot_step = 100
config.log_model_step = 100
config.save_step = save_step
config.save_n_checkpoints = 1
config.save_checkpoints = True
config.print_eval = False
config.optimizer = "AdamW"
config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS
config.optimizer_params = {
"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": weight_decay}
config.lr = lr
config.lr_scheduler = "MultiStepLR"
config.lr_scheduler_params = {"milestones": [
save_step * 3, save_step * 3 * 2, save_step * 3 * 3], "gamma": 0.5, "last_epoch": -1}
config.test_sentences = []
# init the model from config
model = GPTTrainer.init_from_config(config)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS
),
config,
# output_path=os.path.join(output_path, "run", "training"),
output_path=os.path.join(output_path),
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
speaker_ref = train_samples[longest_text_idx]["audio_file"]
trainer_out_path = trainer.output_path
# deallocate VRAM and RAM
del model, trainer, train_samples, eval_samples
gc.collect()
return trainer_out_path
if __name__ == "__main__":
parser = create_xtts_trainer_parser()
args = parser.parse_args()
# Set Torch TF32 MatMul and CUDNN based on the command line arguments
torch.backends.cuda.matmul.allow_tf32 = args.tf32_matmul
torch.backends.cudnn.allow_tf32 = args.tf32_cudnn
trainer_out_path = train_gpt(
metadatas=args.metadatas,
output_path=args.output_path,
num_epochs=args.num_epochs,
batch_size=args.batch_size,
grad_acumm=args.grad_acumm,
weight_decay=args.weight_decay,
lr=args.lr,
max_text_length=args.max_text_length,
max_audio_length=args.max_audio_length,
save_step=args.save_step
)
print(f"Checkpoint saved in dir: {trainer_out_path}")