Initial upload of GPT_XTTS_V2 model files H100 NVL TF 32 - на ўсе 3 датасэты 18 хвілін за эпоху
56dd203
verified
import os | |
import gc | |
import torch | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig | |
from TTS.utils.manage import ModelManager | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from transformers import HfArgumentParser | |
import argparse | |
def create_xtts_trainer_parser(): | |
parser = argparse.ArgumentParser(description="Arguments for XTTS Trainer") | |
parser.add_argument("--output_path", type=str, required=True, | |
help="Path to pretrained + checkpoint model") | |
parser.add_argument("--metadatas", nargs='+', type=str, required=True, | |
help="train_csv_path,eval_csv_path,language") | |
parser.add_argument("--num_epochs", type=int, default=1, | |
help="Number of epochs") | |
parser.add_argument("--batch_size", type=int, default=1, | |
help="Mini batch size") | |
parser.add_argument("--grad_acumm", type=int, default=1, | |
help="Grad accumulation steps") | |
parser.add_argument("--max_audio_length", type=int, default=255995, | |
help="Max audio length") | |
parser.add_argument("--max_text_length", type=int, default=200, | |
help="Max text length") | |
parser.add_argument("--weight_decay", type=float, default=1e-2, | |
help="Weight decay") | |
parser.add_argument("--lr", type=float, default=5e-6, | |
help="Learning rate") | |
parser.add_argument("--save_step", type=int, default=5000, | |
help="Save step") | |
parser.add_argument("--tf32_matmul", type=bool, default=False, | |
help="Enable or disable Torch TF32 MatMul") | |
parser.add_argument("--tf32_cudnn", type=bool, default=False, | |
help="Enable or disable Torch TF32 CUDNN") | |
return parser | |
def train_gpt(metadatas, num_epochs, batch_size, grad_acumm, output_path, max_audio_length, max_text_length, lr, weight_decay, save_step): | |
# Logging parameters | |
RUN_NAME = "GPT_XTTS_FT" | |
PROJECT_NAME = "XTTS_trainer" | |
DASHBOARD_LOGGER = "tensorboard" | |
LOGGER_URI = None | |
# Set here the path that the checkpoints will be saved. Default: ./run/training/ | |
# OUT_PATH = os.path.join(output_path, "run", "training") | |
OUT_PATH = output_path | |
# Training Parameters | |
# for multi-gpu training please make it False | |
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True | |
START_WITH_EVAL = False # if True it will star with evaluation | |
BATCH_SIZE = batch_size # set here the batch size | |
GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps | |
# Define here the dataset that you want to use for the fine-tuning on. | |
DATASETS_CONFIG_LIST = [] | |
for metadata in metadatas: | |
train_csv, eval_csv, language = metadata.split(",") | |
print(train_csv, eval_csv, language) | |
config_dataset = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="ft_dataset", | |
path=os.path.dirname(train_csv), | |
meta_file_train=os.path.basename(train_csv), | |
meta_file_val=os.path.basename(eval_csv), | |
language=language, | |
) | |
DATASETS_CONFIG_LIST.append(config_dataset) | |
# Define the path where XTTS v2.0.1 files will be downloaded | |
CHECKPOINTS_OUT_PATH = os.path.join( | |
OUT_PATH, "XTTS_v2.0_original_model_files/") | |
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) | |
# DVAE files | |
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth" | |
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth" | |
# Set the path to the downloaded files | |
DVAE_CHECKPOINT = os.path.join( | |
CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK)) | |
MEL_NORM_FILE = os.path.join( | |
CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK)) | |
# download DVAE files if needed | |
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): | |
print(" > Downloading DVAE files!") | |
ModelManager._download_model_files( | |
[MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) | |
# Download XTTS v2.0 checkpoint if needed | |
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json" | |
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth" | |
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json" | |
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning. | |
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename( | |
TOKENIZER_FILE_LINK)) # vocab.json file | |
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename( | |
XTTS_CHECKPOINT_LINK)) # model.pth file | |
XTTS_CONFIG_FILE = os.path.join( | |
# config.json file | |
CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) | |
# download XTTS v2.0 files if needed | |
if not os.path.isfile(TOKENIZER_FILE): | |
print(" > Downloading XTTS v2.0 tokenizer!") | |
ModelManager._download_model_files( | |
[TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True | |
) | |
if not os.path.isfile(XTTS_CHECKPOINT): | |
print(" > Downloading XTTS v2.0 checkpoint!") | |
ModelManager._download_model_files( | |
[XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True | |
) | |
if not os.path.isfile(XTTS_CONFIG_FILE): | |
print(" > Downloading XTTS v2.0 config!") | |
ModelManager._download_model_files( | |
[XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True | |
) | |
# init args and config | |
model_args = GPTArgs( | |
max_conditioning_length=264600, # 12 secs | |
min_conditioning_length=88200, # 4 secs | |
debug_loading_failures=False, | |
max_wav_length=max_audio_length, # ~11.6 seconds | |
max_text_length=max_text_length, | |
mel_norm_file=MEL_NORM_FILE, | |
dvae_checkpoint=DVAE_CHECKPOINT, | |
# checkpoint path of the model that you want to fine-tune | |
xtts_checkpoint=XTTS_CHECKPOINT, | |
tokenizer_file=TOKENIZER_FILE, | |
gpt_num_audio_tokens=1026, | |
gpt_start_audio_token=1024, | |
gpt_stop_audio_token=1025, | |
gpt_use_masking_gt_prompt_approach=True, | |
gpt_use_perceiver_resampler=True, | |
) | |
# define audio config | |
audio_config = XttsAudioConfig( | |
sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) | |
# training parameters config | |
config = GPTTrainerConfig() | |
config.load_json(XTTS_CONFIG_FILE) | |
config.epochs = num_epochs | |
config.output_path = OUT_PATH | |
config.model_args = model_args | |
config.run_name = RUN_NAME | |
config.project_name = PROJECT_NAME | |
config.run_description = """ | |
GPT XTTS training | |
""", | |
config.dashboard_logger = DASHBOARD_LOGGER | |
config.logger_uri = LOGGER_URI | |
config.audio = audio_config | |
config.batch_size = BATCH_SIZE | |
config.num_loader_workers = 4 | |
config.eval_split_max_size = 256 | |
config.print_step = 50 | |
config.plot_step = 100 | |
config.log_model_step = 100 | |
config.save_step = save_step | |
config.save_n_checkpoints = 1 | |
config.save_checkpoints = True | |
config.print_eval = False | |
config.optimizer = "AdamW" | |
config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS | |
config.optimizer_params = { | |
"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": weight_decay} | |
config.lr = lr | |
config.lr_scheduler = "MultiStepLR" | |
config.lr_scheduler_params = {"milestones": [ | |
save_step * 3, save_step * 3 * 2, save_step * 3 * 3], "gamma": 0.5, "last_epoch": -1} | |
config.test_sentences = [] | |
# init the model from config | |
model = GPTTrainer.init_from_config(config) | |
# load training samples | |
train_samples, eval_samples = load_tts_samples( | |
DATASETS_CONFIG_LIST, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs( | |
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter | |
skip_train_epoch=False, | |
start_with_eval=START_WITH_EVAL, | |
grad_accum_steps=GRAD_ACUMM_STEPS | |
), | |
config, | |
# output_path=os.path.join(output_path, "run", "training"), | |
output_path=os.path.join(output_path), | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |
# get the longest text audio file to use as speaker reference | |
samples_len = [len(item["text"].split(" ")) for item in train_samples] | |
longest_text_idx = samples_len.index(max(samples_len)) | |
speaker_ref = train_samples[longest_text_idx]["audio_file"] | |
trainer_out_path = trainer.output_path | |
# deallocate VRAM and RAM | |
del model, trainer, train_samples, eval_samples | |
gc.collect() | |
return trainer_out_path | |
if __name__ == "__main__": | |
parser = create_xtts_trainer_parser() | |
args = parser.parse_args() | |
# Set Torch TF32 MatMul and CUDNN based on the command line arguments | |
torch.backends.cuda.matmul.allow_tf32 = args.tf32_matmul | |
torch.backends.cudnn.allow_tf32 = args.tf32_cudnn | |
trainer_out_path = train_gpt( | |
metadatas=args.metadatas, | |
output_path=args.output_path, | |
num_epochs=args.num_epochs, | |
batch_size=args.batch_size, | |
grad_acumm=args.grad_acumm, | |
weight_decay=args.weight_decay, | |
lr=args.lr, | |
max_text_length=args.max_text_length, | |
max_audio_length=args.max_audio_length, | |
save_step=args.save_step | |
) | |
print(f"Checkpoint saved in dir: {trainer_out_path}") | |