arieg/bw_spec_cls_4_01_noise_200

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0370
  • Train Categorical Accuracy: 0.2486
  • Validation Loss: 0.0349
  • Validation Categorical Accuracy: 0.2625
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Categorical Accuracy Validation Loss Validation Categorical Accuracy Epoch
0.6021 0.2458 0.2372 0.2625 0
0.1654 0.2486 0.1210 0.2625 1
0.1042 0.2486 0.0902 0.2625 2
0.0819 0.2486 0.0741 0.2625 3
0.0688 0.2486 0.0634 0.2625 4
0.0595 0.2486 0.0553 0.2625 5
0.0522 0.2486 0.0488 0.2625 6
0.0462 0.2486 0.0434 0.2625 7
0.0412 0.2486 0.0388 0.2625 8
0.0370 0.2486 0.0349 0.2625 9

Framework versions

  • Transformers 4.35.0
  • TensorFlow 2.14.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arieg/bw_spec_cls_4_01_noise_200

Finetuned
(1791)
this model