arita37b's picture
Update README.md
acbcf7b verified
|
raw
history blame
1.65 kB
metadata
license: agpl-3.0
language:
  - ja
base_model:
  - google/gemma-2-2b-it

Gemma2 2b Japanese for Embedding generation.

Base model is Gemma2B JPN-IT published by Google in October 2024 to general public.

Gemma2 2B JPN is the smallest Japanese LLM, so this is very useful for real world practical topics.

(all other Japanese 7B LLM cannot be used easily at high volume for embedding purposes due high inference cost).

This version has been lightly fine tuned on Japanese triplet dataset and with triplet loss and quantized into 4bit GGUF format:

Sample using llama-cpp

  class GemmaSentenceEmbeddingGGUF:
      def init(self, model_path="agguf/gemma-2-2b-jpn-it-embedding.gguf"):
          self.model = Llama(model_path=model_path, embedding=True)
  
      def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
          out = []
          for sentence in sentences:
              embedding_result = self.model.create_embedding([sentence])
              embedding = embedding_result['data'][0]['embedding'][-1]
              out.append(np.array(embedding))
  
          return out
  
  
  se = GemmaSentenceEmbeddingGGUF()
  se.encode(['γ“γ‚“γ«γ‘γ―γ€γ‚±γƒ“γƒ³γ§γ™γ€‚γ‚ˆγ‚γ—γγŠγ­γŒγ„γ—γΎγ™'])[0]

Sample bench (ie partial):

image/png

image/png

Access is public for research discussion purpose.

To access to this version, please contact : kevin.noel at uzabase.com