metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fashion_mnist_quality_drift
metrics:
- accuracy
- f1
base_model: microsoft/resnet-50
model-index:
- name: resnet-50-fashion-mnist-quality-drift
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: fashion_mnist_quality_drift
type: fashion_mnist_quality_drift
config: default
split: training
args: default
metrics:
- type: accuracy
value: 0.73
name: Accuracy
- type: f1
value: 0.7289360255705818
name: F1
resnet-50-fashion-mnist-quality-drift
This model is a fine-tuned version of microsoft/resnet-50 on the fashion_mnist_quality_drift dataset. It achieves the following results on the evaluation set:
- Loss: 0.7473
- Accuracy: 0.73
- F1: 0.7289
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.5138 | 1.0 | 750 | 0.9237 | 0.684 | 0.6826 |
0.9377 | 2.0 | 1500 | 0.7861 | 0.722 | 0.7253 |
0.8276 | 3.0 | 2250 | 0.7473 | 0.73 | 0.7289 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1