arnabdhar's picture
Update README.md
5a74478
|
raw
history blame
2.02 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - pytorch
  - XLMRobertaForTokenClassification
  - named-entity-recognition
  - wikipedia
  - generated_from_trainer
model-index:
  - name: xlm-roberta-base-wikineural
    results: []
datasets:
  - tner/wikineural
  - tner/multinerd
library_name: transformers
pipeline_tag: token-classification

xlm-roberta-base-wikineural

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 37912547
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000

Training results

Training Loss Epoch Step Validation Loss
0.0858 0.14 10000 0.0817
0.0719 0.28 20000 0.0660
0.0656 0.43 30000 0.0631
0.0598 0.57 40000 0.0574
0.0551 0.71 50000 0.0534
0.0523 0.85 60000 0.0512
0.0519 0.99 70000 0.0484
0.0418 1.13 80000 0.0480
0.042 1.28 90000 0.0469
0.041 1.42 100000 0.0467

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0