LoRA text2image fine-tuning - arnaudstiegler/sd-model-gameNgen
These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were fine-tuned on the arnaudstiegler/gameNgen_test_dataset dataset. You can find some example images in the following.
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
Command:
python train_text_to_image.py --dataset_name P-H-B-D-a16z/ViZDoom-Deathmatch-PPO-Lrg --gradient_checkpointing --learning_rate 5e-5 --train_batch_size 8 --num_train_epochs 10 --validation_steps 250 --output_dir sd-model-finetune --push_to_hub --report_to wandb
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for arnaudstiegler/game-n-gen-finetuned-23k-no-cfg
Base model
CompVis/stable-diffusion-v1-4