|
""" |
|
2025.7.4 |
|
2025.7.3 |
|
4.53.2 |
|
0.19.1 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
from trl.trainer.grpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, DataLoader, Dataset, FSDP, GRPOConfig, GRPOTrainer, GenerationConfig, IterableDataset, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, RepeatSampler, RewardFunc, Sampler, SyncRefModelCallback, Trainer, TrainerCallback, Union, VLLMClient, _ForwardRedirection, apply_chat_template, broadcast_object_list, datasets, defaultdict, deque, disable_dropout_in_model, gather, gather_object, generate_model_card, get_comet_experiment_url, identity, is_conversational, is_datasets_available, is_liger_kernel_available, is_peft_available, is_peft_model, is_rich_available, is_vllm_available, is_wandb_available, maybe_apply_chat_template, nanmax, nanmin, nanstd, nn, nullcontext, os, pad, partial, prepare_deepspeed, prepare_fsdp, print_prompt_completions_sample, profiling_context, profiling_decorator, re, seed_worker, set_seed, shuffle_tensor_dict, split_tensor_dict, textwrap, torch, transformers, unwrap_model_for_generation, version, wandb, warnings, Any, FSDP, Union, apply_chat_template, broadcast_object_list, gather, gather_object, is_conversational, maybe_apply_chat_template, nanstd, nullcontext, os, pad, profiling_context, re, torch, unwrap_model_for_generation, os, re, torch, transformers, re, Any, Union, os, profiling_decorator, re, shuffle_tensor_dict, split_tensor_dict, torch, Optional, PreTrainedModel, Trainer, is_peft_available, os, re, torch, FSDP, nn, os, re, GRPOTrainer, Trainer, gather, os, re, torch) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
|
|
def grpo_compute_loss( |
|
ref_logits, |
|
new_logits, |
|
old_logits, |
|
input_ids, |
|
mask, |
|
beta, |
|
advantages, |
|
**kwargs |
|
): |
|
|
|
|
|
loss_type = kwargs.get("loss_type", "grpo") |
|
epsilon_low = kwargs.get("epsilon_low", 0.2) |
|
epsilon_high = kwargs.get("epsilon_high", 0.2) |
|
max_completion_length = kwargs.get("max_completion_length", 8192) |
|
delta = kwargs.get("delta", None) |
|
temperature = kwargs.get("temperature", 1.0) |
|
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0) |
|
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0) |
|
logit_softcapping = kwargs.get("logit_softcapping", 0.0) |
|
|
|
input_ids = input_ids.unsqueeze(-1) |
|
|
|
|
|
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply |
|
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide |
|
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping) |
|
|
|
new_logits = new_logits.to(torch.float32) |
|
|
|
if temperature != 1.0: new_logits = new_logits / temperature |
|
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) |
|
new = new_x - torch.logsumexp(new_logits, dim = -1) |
|
|
|
|
|
with torch.no_grad(): |
|
if beta != 0.0: |
|
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0" |
|
|
|
|
|
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply |
|
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide |
|
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping) |
|
|
|
ref_logits = ref_logits.to(torch.float32) |
|
|
|
if temperature != 1.0: ref_logits = ref_logits / temperature |
|
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1) |
|
ref = ref_x - torch.logsumexp(ref_logits, dim = -1) |
|
pass |
|
|
|
if old_logits is not None: |
|
|
|
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply |
|
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide |
|
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping) |
|
|
|
old_logits = old_logits.to(torch.float32) |
|
|
|
if temperature != 1.0: old_logits = old_logits / temperature |
|
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) |
|
old = old_x - torch.logsumexp(old_logits, dim = -1) |
|
pass |
|
pass |
|
|
|
|
|
|
|
if beta != 0.0: |
|
kl_i = torch.exp(ref - new) - (ref - new) - 1.0 |
|
|
|
else: |
|
kl_i = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
if old_logits is not None: |
|
coef_1 = torch.exp(new - old) |
|
else: |
|
coef_1 = torch.exp(new - new.detach()) |
|
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high) |
|
|
|
if delta is not None: |
|
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1) |
|
else: |
|
loss_1 = coef_1 * advantages.unsqueeze(1) |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
loss_2 = coef_2 * advantages.unsqueeze(1) |
|
loss_i = -torch.min(loss_1, loss_2) |
|
if beta != 0.0: |
|
loss_i = loss_i + beta * kl_i |
|
|
|
mask = mask.to(torch.float32) |
|
n_mask_per_reward = mask.sum(1) |
|
|
|
|
|
if loss_type == "grpo": |
|
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean() |
|
elif loss_type == "bnpo": |
|
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0) |
|
elif loss_type == "dr_grpo": |
|
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length) |
|
else: |
|
raise ValueError(f"Unknown loss type: {loss_type}") |
|
|
|
|
|
|
|
|
|
with torch.inference_mode(): |
|
completion_length = n_mask_per_reward.mean() |
|
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward |
|
mean_kl = mean_kl_per_reward.mean() |
|
pass |
|
|
|
return loss, completion_length, mean_kl |
|
|
|
class UnslothEfficientGRPO(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, _new_hidden_states, _old_hidden_states, _ref_hidden_states, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1, extra_kwargs=None): |
|
if extra_kwargs is None: |
|
extra_kwargs = {} |
|
def compute_loss(new_hidden_states, old_hidden_states, ref_hidden_states, input_ids, mask, advantages, scaling): |
|
new_logits = torch.matmul(new_hidden_states, lm_head.t()) |
|
new_logits = new_logits[:, :-1, :] |
|
with torch.no_grad(): |
|
if beta != 0.0: |
|
ref_logits = torch.matmul(ref_hidden_states, lm_head.t()) |
|
ref_logits = ref_logits[:, :-1, :] |
|
else: |
|
ref_logits = None |
|
if old_hidden_states is not None: |
|
old_logits = torch.matmul(old_hidden_states, lm_head.t()) |
|
old_logits = old_logits[:, :-1, :] |
|
else: |
|
old_logits = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
loss, completion_length, mean_kl = grpo_compute_loss( |
|
ref_logits, |
|
new_logits, |
|
old_logits, |
|
input_ids, |
|
mask, |
|
beta, |
|
advantages, |
|
**extra_kwargs, |
|
) |
|
|
|
|
|
scaled_loss = loss * scaling |
|
|
|
return scaled_loss, (loss.detach(), completion_length, mean_kl,) |
|
pass |
|
|
|
device =_new_hidden_states.device |
|
grad_inputs = torch.empty_like(_new_hidden_states) |
|
accumulated_loss = torch.zeros(1, device = device) |
|
accumulated_completion_length = torch.zeros(1, device = device) |
|
accumulated_mean_kl = torch.zeros(1, device = device) |
|
|
|
def accumulate_chunk(new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling): |
|
(chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl,)) = torch.func.grad_and_value( |
|
compute_loss, |
|
argnums = (0,), |
|
has_aux = True, |
|
)(new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling) |
|
accumulated_loss .add_(unscaled_loss) |
|
accumulated_completion_length.add_(chunk_completion_length) |
|
accumulated_mean_kl .add_(chunk_mean_kl) |
|
return chunk_grad_input |
|
pass |
|
|
|
accumulate_chunk = torch.compile( |
|
accumulate_chunk, |
|
fullgraph = True, |
|
options = torch_compile_options, |
|
) |
|
|
|
grad_inputs_chunks = torch.chunk(grad_inputs, chunks = n_chunks, dim = 0) |
|
new_hidden_states = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0) |
|
if _old_hidden_states is not None: |
|
old_hidden_states = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0) |
|
else: |
|
old_hidden_states = [None] * n_chunks |
|
ref_hidden_states = torch.chunk(_ref_hidden_states, chunks = n_chunks, dim = 0) |
|
input_ids = torch.chunk(_input_ids, chunks = n_chunks, dim = 0) |
|
mask = torch.chunk(_mask, chunks = n_chunks, dim = 0) |
|
advantages = torch.chunk(_advantages, chunks = n_chunks, dim = 0) |
|
|
|
|
|
scaling = scaler.get_scale() if scaler is not None else 1.0 |
|
|
|
|
|
mark_dynamic = lambda x: torch._dynamo.mark_dynamic(x, 1) |
|
|
|
for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, input_ids_j, mask_j, advantages_j,) in \ |
|
zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, ref_hidden_states, input_ids, mask, advantages): |
|
|
|
mark_dynamic(new_hidden_states_j) |
|
mark_dynamic(ref_hidden_states_j) |
|
if old_hidden_states_j is not None: |
|
mark_dynamic(old_hidden_states_j) |
|
mark_dynamic(input_ids_j) |
|
mark_dynamic(mask_j) |
|
|
|
|
|
grad_inputs_j.copy_(accumulate_chunk(new_hidden_states_j, old_hidden_states_j,ref_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling)) |
|
pass |
|
|
|
grad_inputs .div_(n_chunks) |
|
accumulated_loss .div_(n_chunks) |
|
accumulated_completion_length.div_(n_chunks) |
|
accumulated_mean_kl .div_(n_chunks) |
|
ctx.save_for_backward(grad_inputs) |
|
return ( |
|
accumulated_loss, |
|
accumulated_completion_length, |
|
accumulated_mean_kl, |
|
) |
|
pass |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output, dcompletion_length, dmean_kl): |
|
(grad_input,) = ctx.saved_tensors |
|
return (grad_input, None, None, None, None, None, None, None, None, None, None) |
|
pass |
|
|
|
def grpo_accumulated_loss( |
|
trainer, |
|
input_ids, |
|
attention_mask, |
|
logits_to_keep, |
|
completion_mask, |
|
advantages, |
|
old_hidden_states, |
|
n_chunks = -1, |
|
**kwargs, |
|
): |
|
|
|
bsz, qlen = input_ids.shape |
|
|
|
|
|
factors = [i for i in range(1, bsz + 1) if bsz % i == 0] |
|
if n_chunks == -1: n_chunks = bsz |
|
n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)] |
|
|
|
if not hasattr(trainer, '_autocast_dtype'): |
|
trainer._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': trainer._autocast_dtype = torch.float16 |
|
pass |
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1" |
|
|
|
completion_input_ids = input_ids[:, -logits_to_keep:] |
|
lm_head = trainer.model.get_output_embeddings().weight |
|
|
|
with torch.amp.autocast(device_type = trainer.model.device.type, dtype = trainer._autocast_dtype): |
|
with torch.inference_mode(), trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False).disable_adapter(): |
|
ref_hidden_states = trainer.model( |
|
input_ids = input_ids, |
|
attention_mask = attention_mask, |
|
logits_to_keep = logits_to_keep + 1, |
|
).logits |
|
pass |
|
new_hidden_states = trainer.model( |
|
input_ids = input_ids, |
|
attention_mask = attention_mask, |
|
logits_to_keep = logits_to_keep + 1, |
|
).logits |
|
|
|
loss, completion_length, mean_kl = UnslothEfficientGRPO.apply( |
|
new_hidden_states, |
|
old_hidden_states, |
|
ref_hidden_states, |
|
lm_head, |
|
completion_input_ids, |
|
completion_mask, |
|
advantages, |
|
trainer.beta, |
|
trainer.accelerator.scaler, |
|
n_chunks, |
|
kwargs |
|
) |
|
pass |
|
|
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "0" |
|
return loss, completion_length, mean_kl |
|
|
|
|
|
new_logits = torch.matmul(new_hidden_states, lm_head.t()) |
|
new_logits = new_logits[:, :-1, :] |
|
old_logits = torch.matmul(old_hidden_states, lm_head.t()) |
|
old_logits = old_logits[:, :-1, :] |
|
loss, completion_length, mean_kl = grpo_compute_loss( |
|
old_logits, |
|
new_logits, |
|
completion_input_ids, |
|
completion_mask, |
|
trainer.beta, |
|
advantages, |
|
) |
|
return loss, completion_length, mean_kl |
|
pass |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options) |
|
def grpo_compute_loss_slow( |
|
ref_logits, |
|
new_logits, |
|
old_logits, |
|
input_ids, |
|
mask, |
|
beta, |
|
advantages, |
|
**kwargs |
|
): |
|
|
|
|
|
loss_type = kwargs.get("loss_type", "grpo") |
|
epsilon_low = kwargs.get("epsilon_low", 0.2) |
|
epsilon_high = kwargs.get("epsilon_high", 0.2) |
|
max_completion_length = kwargs.get("max_completion_length", 8192) |
|
delta = kwargs.get("delta", None) |
|
temperature = kwargs.get("temperature", 1.0) |
|
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0) |
|
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0) |
|
logit_softcapping = kwargs.get("logit_softcapping", 0.0) |
|
|
|
input_ids = input_ids.unsqueeze(-1) |
|
|
|
|
|
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply |
|
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide |
|
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping) |
|
|
|
new_logits = new_logits.to(torch.float32) |
|
|
|
if temperature != 1.0: new_logits = new_logits / temperature |
|
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) |
|
new = new_x - torch.logsumexp(new_logits, dim = -1) |
|
|
|
|
|
with torch.no_grad(): |
|
if beta != 0.0: |
|
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0" |
|
|
|
|
|
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply |
|
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide |
|
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping) |
|
|
|
ref_logits = ref_logits.to(torch.float32) |
|
|
|
if temperature != 1.0: ref_logits = ref_logits / temperature |
|
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1) |
|
ref = ref_x - torch.logsumexp(ref_logits, dim = -1) |
|
pass |
|
|
|
if old_logits is not None: |
|
|
|
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply |
|
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide |
|
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping) |
|
|
|
old_logits = old_logits.to(torch.float32) |
|
|
|
if temperature != 1.0: old_logits = old_logits / temperature |
|
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) |
|
old = old_x - torch.logsumexp(old_logits, dim = -1) |
|
pass |
|
pass |
|
|
|
|
|
|
|
if beta != 0.0: |
|
kl_i = torch.exp(ref - new) - (ref - new) - 1.0 |
|
|
|
else: |
|
kl_i = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
if old_logits is not None: |
|
coef_1 = torch.exp(new - old) |
|
else: |
|
coef_1 = torch.exp(new - new.detach()) |
|
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high) |
|
|
|
if delta is not None: |
|
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1) |
|
else: |
|
loss_1 = coef_1 * advantages.unsqueeze(1) |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
loss_2 = coef_2 * advantages.unsqueeze(1) |
|
loss_i = -torch.min(loss_1, loss_2) |
|
if beta != 0.0: |
|
loss_i = loss_i + beta * kl_i |
|
|
|
mask = mask.to(torch.float32) |
|
n_mask_per_reward = mask.sum(1) |
|
|
|
|
|
if loss_type == "grpo": |
|
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean() |
|
elif loss_type == "bnpo": |
|
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0) |
|
elif loss_type == "dr_grpo": |
|
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length) |
|
else: |
|
raise ValueError(f"Unknown loss type: {loss_type}") |
|
|
|
|
|
|
|
|
|
with torch.inference_mode(): |
|
completion_length = n_mask_per_reward.mean() |
|
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward |
|
mean_kl = mean_kl_per_reward.mean() |
|
pass |
|
|
|
return loss, completion_length, mean_kl |
|
|
|
def vLLMSamplingParams(**kwargs): |
|
from vllm import SamplingParams |
|
sampling_params = SamplingParams(**kwargs) |
|
sampling_params._set_kwargs = kwargs |
|
return sampling_params |
|
@dataclass |
|
class UnslothGRPOConfig(GRPOConfig): |
|
""" |
|
|
|
Configuration class for the [`GRPOTrainer`]. |
|
|
|
This class includes only the parameters that are specific to GRPO training. For a full list of training arguments, |
|
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may |
|
differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
> Parameters that control the model and reference model |
|
|
|
model_init_kwargs (`str`, `dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
argument of the [`GRPOTrainer`] is provided as a string. |
|
disable_dropout (`bool`, *optional*, defaults to `False`): |
|
Whether to disable dropout in the model. This is useful for training with a reference model, as it prevents |
|
the model from generating different logprobs for the same input. |
|
|
|
> Parameters that control the data preprocessing |
|
|
|
remove_unused_columns (`bool`, *optional*, defaults to `False`): |
|
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that |
|
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`. |
|
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): |
|
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left. |
|
num_generations (`int` or `None`, *optional*, defaults to `8`): |
|
Number of generations per prompt to sample. The effective batch size (num_processes * per_device_batch_size |
|
* gradient_accumulation_steps) must be evenly divisible by this value. |
|
max_completion_length (`int` or `None`, *optional*, defaults to `256`): |
|
Maximum length of the generated completion. |
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible |
|
with vLLM generation. |
|
shuffle_dataset (`bool`, *optional*, defaults to `True`): |
|
Whether to shuffle the training dataset. |
|
|
|
> Parameters that control generation |
|
|
|
generation_batch_size: (`int` or `None`, *optional*, defaults to `None`): |
|
Batch size to use for generation. If `None`, it defaults to the effective training batch size: |
|
`per_device_train_batch_size * num_processes * gradient_accumulation_steps`. |
|
steps_per_generations: (`int` or `None`, *optional*, defaults to `None`): |
|
Number of optimization steps per generation. If `None`, it defaults to gradient_accumulation_steps. |
|
temperature (`float`, defaults to `1.0`): |
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
top_p (`float`, *optional*, defaults to `1.0`): |
|
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to |
|
`1.0` to consider all tokens. |
|
top_k (`int` or `None`, *optional*, defaults to `None`): |
|
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is |
|
disabled and all tokens are considered. |
|
min_p (`float` or `None`, *optional*, defaults to `None`): |
|
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a |
|
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range. |
|
repetition_penalty (`float`, *optional*, defaults to `1.0`): |
|
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far. |
|
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat |
|
tokens. |
|
cache_implementation (`str` or `None`, *optional*, defaults to `None`): |
|
Implementation of the cache method for faster generation when use_vllm is set to False. |
|
generation_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if |
|
using vLLM) when sampling completions. This can be used to further customize the generation behavior, such |
|
as setting `supress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation |
|
parameters (like `min_p`, `top_p`, etc.), they will override them. |
|
|
|
> Parameters that control generation acceleration powered by vLLM |
|
|
|
use_vllm (`bool`, *optional*, defaults to `False`): |
|
Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation |
|
instead of the default model.generate(). Requires `vllm` to be installed. |
|
vllm_mode (`str`, *optional*, defaults to `"server"`): |
|
Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or |
|
`"colocate"`. |
|
|
|
- `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM |
|
server is running (start with `trl vllm-serve`). |
|
- `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a |
|
separate server but may cause resource contention with training. |
|
vllm_guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`): |
|
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled. |
|
|
|
> Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`) |
|
vllm_server_base_url (`str` or `None`, *optional*, defaults to `None`): |
|
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and |
|
`vllm_server_port` are ignored. |
|
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`): |
|
Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
vllm_server_port (`int`, *optional*, defaults to `8000`): |
|
Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
vllm_server_timeout (`float`, *optional*, defaults to `240.0`): |
|
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the |
|
timeout, a `ConnectionError` is raised. |
|
|
|
> Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`) |
|
|
|
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.3`): |
|
Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to |
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
launching the vLLM server via the `--vllm_gpu_memory_utilization` flag. |
|
vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`): |
|
Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to |
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
launching the vLLM server via the `--vllm_tensor_parallel_size` flag. |
|
|
|
> Parameters that control the training |
|
|
|
beta (`float`, *optional*, defaults to `0.0`): |
|
KL coefficient. If `0.0` (default), the reference model is not loaded, reducing memory usage and improving |
|
training speed. |
|
num_iterations (`int`, *optional*, defaults to `1`): |
|
Number of iterations per batch (denoted as μ in the algorithm). |
|
epsilon (`float`, *optional*, defaults to `0.2`): |
|
Epsilon value for clipping. |
|
delta: (`float` or `None`, *optional*, defaults to `None`): |
|
Enables the upper clipping bound in two-sided GRPO loss when set to a float. If `None` (default), standard |
|
GRPO clipping is used. Recommended to be greater than `1 + ε` when enabled. This method is introduced in |
|
the [INTELLECT-2 tech report](https://huggingface.co/papers/2505.07291). |
|
epsilon_high (`float` or `None`, *optional*, defaults to `None`): |
|
Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the lower-bound |
|
specified in argument `epsilon`. Paper [DAPO](https://huggingface.co/papers/2503.14476) recommends `0.28`. |
|
reward_weights (`list[float]` or `None`, *optional*, defaults to `None`): |
|
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are |
|
weighted equally with weight `1.0`. |
|
scale_rewards (`bool`, *optional*, defaults to `True`): |
|
Whether to scale the rewards by dividing them by their standard deviation. If `True` (default), the rewards |
|
are normalized by the standard deviation, ensuring they have unit variance. If `False`, no scaling is |
|
applied. The [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) recommends not scaling the rewards, |
|
as scaling by the standard deviation introduces a question-level difficulty bias. |
|
loss_type (`str`, *optional*, defaults to `"bnpo"`): |
|
Specifies the loss formulation to use. Supported values are: |
|
|
|
- `"grpo"`: Aggregates token-level losses by normalizing over sequence length. Not recommended due to |
|
length bias—this approach tends to prefer shorter completions with positive advantages and longer ones |
|
with negative advantages. |
|
- `"bnpo"`: Aggregates token-level losses by normalizing number of active token in the local batch. |
|
Note that normalization is performed over the local batch only, so results may slightly vary depending |
|
on the local batch size, despite a constant effective batch size. When using |
|
`per_device_train_batch_size==1`, the loss is equivalent to the GRPO loss. |
|
- `"dr_grpo"`: Aggregates token-level losses by normalizing with a global constant. This method was |
|
introduced in the [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) to eliminate length bias. |
|
The value of the constant corresponds to `max_completion_length`. |
|
mask_truncated_completions (`bool`, *optional*, defaults to `False`): |
|
When enabled, truncated completions are excluded from the loss calculation, preventing them from being |
|
incorrectly penalized and introducing noise during training. According to the |
|
[DAPO](https://huggingface.co/papers/2503.14476) paper, this is a good practice for training stability. |
|
sync_ref_model (`bool`, *optional*, defaults to `False`): |
|
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using |
|
the `ref_model_mixup_alpha` parameter. This synchronization originates from the |
|
[TR-DPO](https://huggingface.co/papers/2404.09656) paper. |
|
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`): |
|
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix |
|
between the current policy and the previous reference policy during updates. The reference policy is |
|
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you |
|
must set `sync_ref_model=True`. |
|
ref_model_sync_steps (`int`, *optional*, defaults to `512`): |
|
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how |
|
frequently the current policy is synchronized with the reference policy. To use this parameter, you must |
|
set `sync_ref_model=True`. |
|
use_liger_loss (`bool`, *optional*, defaults to `False`): |
|
Whether to use the Liger GRPO loss. |
|
|
|
> Parameters that control the logging |
|
|
|
log_completions (`bool`, *optional*, defaults to `False`): |
|
Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is installed, |
|
it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`. |
|
num_completions_to_print (`int` or `None`, *optional*, defaults to `None`): |
|
Number of completions to print with `rich`. If `None`, all completions are logged. |
|
wandb_log_unique_prompts (`bool`, *optional*, defaults to `False`): |
|
Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, all prompts |
|
are logged. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = False, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
hub_revision = None, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
liger_kernel_config = None, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = False, |
|
model_init_kwargs = None, |
|
disable_dropout = False, |
|
max_prompt_length = 512, |
|
num_generations = 8, |
|
max_completion_length = 256, |
|
ds3_gather_for_generation = True, |
|
shuffle_dataset = True, |
|
generation_batch_size = None, |
|
steps_per_generation = None, |
|
temperature = 1.0, |
|
top_p = 1.0, |
|
top_k = None, |
|
min_p = None, |
|
generation_kwargs = {}, |
|
repetition_penalty = 1.0, |
|
cache_implementation = None, |
|
use_vllm = False, |
|
vllm_server_base_url = None, |
|
vllm_mode = 'colocate', |
|
vllm_guided_decoding_regex = None, |
|
vllm_server_host = '0.0.0.0', |
|
vllm_server_port = 8000, |
|
vllm_server_timeout = 240.0, |
|
vllm_gpu_memory_utilization = 0.3, |
|
vllm_tensor_parallel_size = 1, |
|
beta = 0.001, |
|
num_iterations = 1, |
|
epsilon = 0.2, |
|
delta = None, |
|
epsilon_high = None, |
|
reward_weights = None, |
|
scale_rewards = True, |
|
loss_type = 'bnpo', |
|
mask_truncated_completions = False, |
|
sync_ref_model = False, |
|
ref_model_mixup_alpha = 0.6, |
|
ref_model_sync_steps = 512, |
|
use_liger_loss = False, |
|
log_completions = False, |
|
num_completions_to_print = None, |
|
wandb_log_unique_prompts = False, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
if loss_type.lower() == 'dr_grpo': |
|
loss_type = 'dr_grpo' |
|
elif loss_type.lower() == 'dapo': |
|
loss_type = 'dapo' |
|
if loss_type.lower() == 'dr_grpo': |
|
if scale_rewards == None: |
|
scale_rewards = True |
|
elif scale_rewards == True: |
|
print('Unsloth: The Dr GRPO paper recommends setting `scale_rewards` to False! Will override. Set it to `None` to force False.') |
|
scale_rewards = False |
|
elif loss_type.lower() == 'dapo': |
|
print('Unsloth: The DAPO paper recommends `mask_truncated_completions = True`') |
|
print('Unsloth: The DAPO paper recommends `epsilon_high = 0.28`') |
|
print('Unsloth: The DAPO paper recommends setting `beta = 0.0` to remove the KL term') |
|
mask_truncated_completions = True |
|
epsilon_high = 0.28 |
|
beta = 0.0 |
|
loss_type = 'bnpo' |
|
|
|
if (per_device_train_batch_size // num_generations) * num_generations != per_device_train_batch_size: |
|
print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations)) |
|
per_device_train_batch_size = num_generations |
|
|
|
if temperature <= 0: |
|
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') |
|
elif temperature >= 10: |
|
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') |
|
|
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
hub_revision = hub_revision, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
liger_kernel_config = liger_kernel_config, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
model_init_kwargs = model_init_kwargs, |
|
disable_dropout = disable_dropout, |
|
max_prompt_length = max_prompt_length, |
|
num_generations = num_generations, |
|
max_completion_length = max_completion_length, |
|
ds3_gather_for_generation = ds3_gather_for_generation, |
|
shuffle_dataset = shuffle_dataset, |
|
generation_batch_size = generation_batch_size, |
|
steps_per_generation = steps_per_generation, |
|
temperature = temperature, |
|
top_p = top_p, |
|
top_k = top_k, |
|
min_p = min_p, |
|
generation_kwargs = generation_kwargs, |
|
repetition_penalty = repetition_penalty, |
|
cache_implementation = cache_implementation, |
|
use_vllm = use_vllm, |
|
vllm_server_base_url = vllm_server_base_url, |
|
vllm_mode = vllm_mode, |
|
vllm_guided_decoding_regex = vllm_guided_decoding_regex, |
|
vllm_server_host = vllm_server_host, |
|
vllm_server_port = vllm_server_port, |
|
vllm_server_timeout = vllm_server_timeout, |
|
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, |
|
vllm_tensor_parallel_size = vllm_tensor_parallel_size, |
|
beta = beta, |
|
num_iterations = num_iterations, |
|
epsilon = epsilon, |
|
delta = delta, |
|
epsilon_high = epsilon_high, |
|
reward_weights = reward_weights, |
|
scale_rewards = scale_rewards, |
|
loss_type = loss_type, |
|
mask_truncated_completions = mask_truncated_completions, |
|
sync_ref_model = sync_ref_model, |
|
ref_model_mixup_alpha = ref_model_mixup_alpha, |
|
ref_model_sync_steps = ref_model_sync_steps, |
|
use_liger_loss = use_liger_loss, |
|
log_completions = log_completions, |
|
num_completions_to_print = num_completions_to_print, |
|
wandb_log_unique_prompts = wandb_log_unique_prompts,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothGRPOTrainer(Trainer): |
|
"""""" |
|
|
|
_tag_names = ["trl", "grpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[str, PreTrainedModel], |
|
reward_funcs: Union[RewardFunc, list[RewardFunc]], |
|
args: Optional[GRPOConfig] = None, |
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, |
|
processing_class: Optional[PreTrainedTokenizerBase] = None, |
|
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), |
|
peft_config: Optional["PeftConfig"] = None, |
|
): |
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'): |
|
if (getattr(args, 'use_vllm', False) == False): |
|
args.use_vllm = True |
|
args.vllm_mode='colocate' |
|
|
|
if args is None: |
|
model_name = model if isinstance(model, str) else model.config._name_or_path |
|
model_name = model_name.split("/")[-1] |
|
args = GRPOConfig(f"{model_name}-GRPO") |
|
|
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
if isinstance(model, str): |
|
model_id = model |
|
torch_dtype = model_init_kwargs.get("torch_dtype") |
|
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: |
|
pass |
|
elif isinstance(torch_dtype, str): |
|
torch_dtype = getattr(torch, torch_dtype) |
|
model_init_kwargs["torch_dtype"] = torch_dtype |
|
else: |
|
raise ValueError( |
|
"Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing " |
|
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." |
|
) |
|
|
|
model_init_kwargs["use_cache"] = ( |
|
False if args.gradient_checkpointing else model_init_kwargs.get("use_cache") |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) |
|
else: |
|
model_id = model.config._name_or_path |
|
if args.model_init_kwargs is not None: |
|
raise ValueError( |
|
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. " |
|
"This argument can only be used when the `model` argument is a string." |
|
) |
|
|
|
if False: |
|
if not is_peft_available(): |
|
raise ImportError("PEFT is required to use `peft_config`. Run `pip install peft`.") |
|
model = model |
|
|
|
|
|
if args.gradient_checkpointing: |
|
model = self._enable_gradient_checkpointing(model, args) |
|
|
|
|
|
if processing_class is None: |
|
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left") |
|
if processing_class.pad_token is None: |
|
processing_class.pad_token = processing_class.eos_token |
|
|
|
|
|
if not isinstance(reward_funcs, list): |
|
reward_funcs = [reward_funcs] |
|
self.reward_func_names = [] |
|
for i, reward_func in enumerate(reward_funcs): |
|
if isinstance(reward_func, str): |
|
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( |
|
reward_func, num_labels=1, **model_init_kwargs |
|
) |
|
if isinstance(reward_funcs[i], nn.Module): |
|
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1]) |
|
else: |
|
self.reward_func_names.append(reward_funcs[i].__name__) |
|
self.reward_funcs = reward_funcs |
|
|
|
|
|
if args.reward_weights is not None: |
|
if len(args.reward_weights) != len(reward_funcs): |
|
raise ValueError( |
|
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " |
|
f"functions ({len(reward_funcs)})" |
|
) |
|
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) |
|
else: |
|
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32) |
|
|
|
|
|
if reward_processing_classes is None: |
|
reward_processing_classes = [None] * len(reward_funcs) |
|
elif not isinstance(reward_processing_classes, list): |
|
reward_processing_classes = [reward_processing_classes] |
|
else: |
|
if len(reward_processing_classes) != len(reward_funcs): |
|
raise ValueError("The number of reward processing classes must match the number of reward functions.") |
|
|
|
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)): |
|
if isinstance(reward_func, PreTrainedModel): |
|
if reward_processing_class is None: |
|
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) |
|
if reward_processing_class.pad_token_id is None: |
|
reward_processing_class.pad_token = reward_processing_class.eos_token |
|
|
|
|
|
reward_func.config.pad_token_id = reward_processing_class.pad_token_id |
|
reward_processing_classes[i] = reward_processing_class |
|
self.reward_processing_classes = reward_processing_classes |
|
|
|
|
|
self.max_prompt_length = args.max_prompt_length |
|
self.max_completion_length = args.max_completion_length |
|
self.num_generations = args.num_generations |
|
self.temperature = args.temperature |
|
self.top_p = args.top_p |
|
self.top_k = args.top_k |
|
self.min_p = args.min_p |
|
self.repetition_penalty = args.repetition_penalty |
|
self.use_vllm = args.use_vllm |
|
self.vllm_mode = args.vllm_mode |
|
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization |
|
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size |
|
self.use_liger_loss = args.use_liger_loss |
|
self.loss_type = args.loss_type |
|
self.scale_rewards = args.scale_rewards |
|
self.mask_truncated_completions = args.mask_truncated_completions |
|
|
|
|
|
self.shuffle_dataset = args.shuffle_dataset |
|
|
|
if ( |
|
isinstance(train_dataset, IterableDataset) |
|
or isinstance(eval_dataset, IterableDataset) |
|
or ( |
|
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values()) |
|
) |
|
): |
|
|
|
raise NotImplementedError( |
|
"Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead." |
|
) |
|
|
|
|
|
self.num_iterations = args.num_iterations |
|
self.epsilon_low = args.epsilon |
|
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon |
|
|
|
self._step = 0 |
|
|
|
|
|
self._buffered_inputs = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=identity, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
) |
|
|
|
|
|
self.beta = args.beta |
|
if self.beta == 0.0: |
|
|
|
self.ref_model = None |
|
elif is_peft_model(model): |
|
|
|
|
|
self.ref_model = None |
|
else: |
|
|
|
self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs) |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
if self.ref_model is not None: |
|
disable_dropout_in_model(self.ref_model) |
|
|
|
|
|
if self.use_liger_loss: |
|
if not is_liger_kernel_available(): |
|
raise ImportError( |
|
"Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`." |
|
) |
|
|
|
self._forward_redirection = _ForwardRedirection() |
|
|
|
self.liger_grpo_loss = LigerFusedLinearGRPOLoss( |
|
beta=self.beta, |
|
epsilon_low=self.epsilon_low, |
|
epsilon_high=self.epsilon_high, |
|
temperature=self.temperature, |
|
use_ref_model=self.beta != 0.0, |
|
loss_type=self.loss_type, |
|
max_completion_length=self.max_completion_length, |
|
) |
|
|
|
|
|
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} |
|
self._total_train_tokens = 0 |
|
self.log_completions = args.log_completions |
|
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts |
|
self.num_completions_to_print = args.num_completions_to_print |
|
|
|
|
|
maxlen = self.accelerator.num_processes * args.per_device_train_batch_size * args.steps_per_generation |
|
self._textual_logs = { |
|
"prompt": deque(maxlen=maxlen), |
|
"completion": deque(maxlen=maxlen), |
|
"rewards": defaultdict(lambda: deque(maxlen=maxlen)), |
|
"advantages": deque(maxlen=maxlen), |
|
} |
|
|
|
|
|
|
|
|
|
set_seed(args.seed, device_specific=True) |
|
|
|
if self.use_vllm: |
|
if not is_vllm_available(): |
|
raise ImportError( |
|
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with " |
|
"`pip install vllm` to use it." |
|
) |
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
if args.vllm_server_base_url is not None: |
|
base_url = args.vllm_server_base_url |
|
else: |
|
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}" |
|
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout) |
|
self.vllm_client.init_communicator() |
|
|
|
elif self.vllm_mode == "colocate": |
|
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0: |
|
raise ValueError( |
|
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size " |
|
f"({self.accelerator.num_processes}) evenly." |
|
) |
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration( |
|
[ |
|
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size)) |
|
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size) |
|
] |
|
) |
|
|
|
self.llm = model.vllm_engine |
|
self.guided_decoding_regex = args.vllm_guided_decoding_regex |
|
|
|
self._last_loaded_step = -1 |
|
self.accelerator.wait_for_everyone() |
|
else: |
|
generation_kwargs = { |
|
"max_new_tokens": self.max_completion_length, |
|
"do_sample": True, |
|
"pad_token_id": processing_class.pad_token_id, |
|
"bos_token_id": processing_class.bos_token_id, |
|
"eos_token_id": processing_class.eos_token_id, |
|
"temperature": self.temperature, |
|
"top_p": self.top_p, |
|
"top_k": self.top_k, |
|
"min_p": self.min_p, |
|
"repetition_penalty": self.repetition_penalty, |
|
"cache_implementation": args.cache_implementation, |
|
} |
|
if args.generation_kwargs is not None: |
|
generation_kwargs.update(args.generation_kwargs) |
|
self.generation_config = GenerationConfig(**generation_kwargs) |
|
|
|
|
|
|
|
|
|
self.model_accepts_loss_kwargs = False |
|
|
|
|
|
self.model.add_model_tags(self._tag_names) |
|
|
|
if self.ref_model is not None: |
|
if self.is_deepspeed_enabled: |
|
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) |
|
elif self.is_fsdp_enabled: |
|
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator) |
|
else: |
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
|
|
if args.sync_ref_model: |
|
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) |
|
|
|
for i, reward_func in enumerate(self.reward_funcs): |
|
if isinstance(reward_func, PreTrainedModel): |
|
if self.is_deepspeed_enabled: |
|
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator) |
|
else: |
|
|
|
self.reward_funcs[i] = self.accelerator.prepare_model( |
|
reward_func, evaluation_mode=True, device_placement=True |
|
) |
|
|
|
def _set_signature_columns_if_needed(self): |
|
|
|
|
|
|
|
|
|
if self._signature_columns is None: |
|
self._signature_columns = ["prompt"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_train_dataloader(self): |
|
if self.train_dataset is None: |
|
raise ValueError("Trainer: training requires a train_dataset.") |
|
|
|
train_dataset = self.train_dataset |
|
data_collator = self.data_collator |
|
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): |
|
train_dataset = self._remove_unused_columns(train_dataset, description="training") |
|
else: |
|
data_collator = self._get_collator_with_removed_columns(data_collator, description="training") |
|
|
|
dataloader_params = { |
|
"batch_size": self._train_batch_size * self.args.steps_per_generation, |
|
"collate_fn": data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
} |
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset): |
|
dataloader_params["sampler"] = self._get_train_sampler() |
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
if version.parse(transformers.__version__) >= version.parse("4.52.0"): |
|
|
|
dataloader_params["worker_init_fn"] = partial( |
|
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index |
|
) |
|
else: |
|
dataloader_params["worker_init_fn"] = seed_worker |
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) |
|
|
|
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dataset is None: |
|
dataset = self.train_dataset |
|
return RepeatSampler( |
|
data_source=dataset, |
|
mini_repeat_count=self.num_generations, |
|
batch_size=self.args.generation_batch_size // self.num_generations, |
|
repeat_count=self.num_iterations * self.args.steps_per_generation, |
|
shuffle=self.shuffle_dataset, |
|
seed=self.args.seed, |
|
) |
|
|
|
def _get_eval_sampler(self, eval_dataset) -> Sampler: |
|
|
|
return RepeatSampler( |
|
data_source=eval_dataset, |
|
mini_repeat_count=self.num_generations, |
|
seed=self.args.seed, |
|
) |
|
|
|
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: GRPOConfig) -> PreTrainedModel: |
|
"""Enables gradient checkpointing for the model.""" |
|
|
|
model.config.use_cache = False |
|
|
|
|
|
if is_peft_model(model): |
|
model.base_model.gradient_checkpointing_enable() |
|
|
|
else: |
|
model.gradient_checkpointing_enable() |
|
|
|
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {} |
|
use_reentrant = ( |
|
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] |
|
) |
|
|
|
if use_reentrant: |
|
model.enable_input_require_grads() |
|
|
|
return model |
|
|
|
@profiling_decorator |
|
def _get_last_hidden_state(self, unwrapped_model, input_ids, attention_mask, logits_to_keep=None): |
|
if is_peft_model(unwrapped_model): |
|
unwrapped_model = unwrapped_model.base_model.model |
|
last_hidden_state = unwrapped_model.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state |
|
last_hidden_state = last_hidden_state[:, :-1, :] |
|
if logits_to_keep is not None: |
|
last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] |
|
return last_hidden_state |
|
|
|
|
|
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep): |
|
if True: |
|
return None |
|
|
|
if not hasattr(self, '_autocast_dtype'): |
|
self._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': self._autocast_dtype = torch.float16 |
|
|
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1" |
|
with torch.amp.autocast(device_type = DEVICE_TYPE, dtype = self._autocast_dtype): |
|
|
|
logits = model( |
|
input_ids = input_ids, |
|
attention_mask = attention_mask, |
|
logits_to_keep = logits_to_keep + 1, |
|
).logits |
|
|
|
return logits |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
|
def _sync_fsdp_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None): |
|
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM.""" |
|
if visited is None: |
|
visited = set() |
|
|
|
for child_name, child_module in module.named_children(): |
|
child_prefix = f"{prefix}.{child_name}" if prefix else child_name |
|
self._sync_fsdp_params_to_vllm( |
|
child_module, prefix=child_prefix, visited=visited |
|
) |
|
|
|
if isinstance(module, FSDP): |
|
with FSDP.summon_full_params(module, recurse=False, writeback=False): |
|
for param_name, param in module.named_parameters(): |
|
full_name = f"{prefix}.{param_name}" if prefix else param_name |
|
for extra in ("_fsdp_wrapped_module.", "_checkpoint_wrapped_module."): |
|
full_name = full_name.replace(extra, "") |
|
|
|
if full_name in visited: |
|
continue |
|
visited.add(full_name) |
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
self.vllm_client.update_named_param(full_name, param.data) |
|
elif self.vllm_mode == "colocate": |
|
|
|
pass |
|
|
|
pass |
|
|
|
def _move_model_to_vllm(self, *args, **kwargs): return None |
|
|
|
@profiling_decorator |
|
def _prepare_inputs( |
|
self, generation_batch: dict[str, Union[torch.Tensor, Any]] |
|
) -> dict[str, Union[torch.Tensor, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if hasattr(self, 'llm'): |
|
if getattr(self.llm.llm_engine.vllm_config.model_config, 'enable_sleep_mode', False): |
|
self.llm.wake_up() |
|
|
|
mode = "train" if self.model.training else "eval" |
|
if mode == "train": |
|
generate_every = self.args.steps_per_generation * self.num_iterations |
|
if self._step % generate_every == 0 or self._buffered_inputs is None: |
|
|
|
generation_batch = self._generate_and_score_completions(generation_batch) |
|
generation_batch = shuffle_tensor_dict(generation_batch) |
|
self._buffered_inputs = split_tensor_dict(generation_batch, self.args.steps_per_generation) |
|
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation] |
|
self._step += 1 |
|
else: |
|
|
|
|
|
inputs = self._generate_and_score_completions(generation_batch) |
|
if hasattr(self, 'llm'): |
|
if getattr(self.llm.llm_engine.vllm_config.model_config, 'enable_sleep_mode', False): |
|
self.llm.sleep(os.environ.get('VLLM_SLEEP_MODE', 1)) |
|
return inputs |
|
|
|
@profiling_decorator |
|
def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list): |
|
device = self.accelerator.device |
|
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) |
|
|
|
|
|
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]] |
|
reward_kwargs = {key: [example[key] for example in inputs] for key in keys} |
|
|
|
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate( |
|
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names) |
|
): |
|
with profiling_context(self, reward_func_name): |
|
if isinstance(reward_func, nn.Module): |
|
if is_conversational(inputs[0]): |
|
messages = [{"messages": p + c} for p, c in zip(prompts, completions)] |
|
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] |
|
else: |
|
texts = [p + c for p, c in zip(prompts, completions)] |
|
reward_inputs = reward_processing_class( |
|
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False |
|
) |
|
reward_inputs = super()._prepare_inputs(reward_inputs) |
|
with torch.inference_mode(): |
|
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] |
|
else: |
|
output_reward_func = reward_func( |
|
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs |
|
) |
|
|
|
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func] |
|
|
|
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) |
|
|
|
|
|
if torch.isnan(rewards_per_func).all(dim=1).any(): |
|
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0] |
|
row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()} |
|
row_reward_kwargs["prompt"] = prompts[nan_row_idx] |
|
row_reward_kwargs["completion"] = completions[nan_row_idx] |
|
warnings.warn( |
|
f"All reward functions returned None for the following kwargs: {row_reward_kwargs}. " |
|
"Please ensure that at least one reward function returns a valid reward." |
|
) |
|
|
|
|
|
|
|
rewards_per_func = gather(rewards_per_func) |
|
return rewards_per_func |
|
|
|
def _generate_and_score_completions( |
|
self, inputs: list[dict[str, Union[torch.Tensor, Any]]] |
|
) -> dict[str, Union[torch.Tensor, Any]]: |
|
device = self.accelerator.device |
|
mode = "train" if self.model.training else "eval" |
|
|
|
prompts = [x["prompt"] for x in inputs] |
|
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs] |
|
prompt_inputs = self.processing_class( |
|
text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False |
|
) |
|
prompt_inputs = super()._prepare_inputs(prompt_inputs) |
|
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"] |
|
|
|
if self.max_prompt_length is not None: |
|
|
|
|
|
|
|
prompt_ids = prompt_ids[:, -self.max_prompt_length :] |
|
prompt_mask = prompt_mask[:, -self.max_prompt_length :] |
|
prompts_text = self.processing_class.batch_decode( |
|
prompt_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False |
|
) |
|
prompts_text = [ |
|
re.sub(rf"^({re.escape(self.processing_class.pad_token)})+", "", text) for text in prompts_text |
|
] |
|
|
|
|
|
if self.use_vllm: |
|
|
|
if self.state.global_step != self._last_loaded_step: |
|
self._move_model_to_vllm() |
|
self._last_loaded_step = self.state.global_step |
|
|
|
|
|
if self.vllm_mode == "server": |
|
all_prompts_text = gather_object(prompts_text) |
|
if self.accelerator.is_main_process: |
|
|
|
|
|
|
|
ordered_set_of_prompts = all_prompts_text[:: self.num_generations] |
|
with profiling_context(self, "vLLM.generate"): |
|
completion_ids = self.vllm_client.generate( |
|
prompts=ordered_set_of_prompts, |
|
n=self.num_generations, |
|
repetition_penalty=self.repetition_penalty, |
|
temperature=self.temperature, |
|
top_p=self.top_p, |
|
top_k=-1 if self.top_k is None else self.top_k, |
|
min_p=0.0 if self.min_p is None else self.min_p, |
|
max_tokens=self.max_completion_length, |
|
guided_decoding_regex=self.guided_decoding_regex, |
|
generation_kwargs=self.args.generation_kwargs, |
|
) |
|
else: |
|
completion_ids = [None] * len(all_prompts_text) |
|
|
|
|
|
completion_ids = broadcast_object_list(completion_ids, from_process=0) |
|
process_slice = slice( |
|
self.accelerator.process_index * len(prompts), |
|
(self.accelerator.process_index + 1) * len(prompts), |
|
) |
|
completion_ids = completion_ids[process_slice] |
|
|
|
|
|
elif self.vllm_mode == "colocate": |
|
if self.guided_decoding_regex: |
|
guided_decoding = GuidedDecodingParams(backend="outlines", regex=self.guided_decoding_regex) |
|
else: |
|
guided_decoding = None |
|
|
|
generation_kwargs = { |
|
"n": 1, |
|
"repetition_penalty": self.repetition_penalty, |
|
"temperature": self.temperature, |
|
"top_p": self.top_p, |
|
"top_k": -1 if self.top_k is None else self.top_k, |
|
"min_p": 0.0 if self.min_p is None else self.min_p, |
|
"max_tokens": self.max_completion_length, |
|
"guided_decoding": guided_decoding, |
|
} |
|
if self.args.generation_kwargs is not None: |
|
generation_kwargs.update(self.args.generation_kwargs) |
|
sampling_params = SamplingParams(**generation_kwargs) |
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
|
|
|
orig_size = len(prompts_text) |
|
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)] |
|
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group) |
|
all_prompts_text = [p for sublist in gathered_prompts for p in sublist] |
|
else: |
|
all_prompts_text = prompts_text |
|
|
|
with profiling_context(self, "vLLM.generate"): |
|
all_outputs = self.llm.generate(all_prompts_text, sampling_params=sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model', load_tensors = True)) |
|
|
|
completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs] |
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
|
|
|
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group) |
|
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size) |
|
completion_ids = completion_ids[tp_slice] |
|
|
|
|
|
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids] |
|
completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id) |
|
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
else: |
|
|
|
with unwrap_model_for_generation( |
|
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
) as unwrapped_model: |
|
with ( |
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) |
|
if self.is_fsdp_enabled |
|
else nullcontext() |
|
): |
|
prompt_completion_ids = unwrapped_model.generate( |
|
prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config |
|
) |
|
|
|
|
|
prompt_length = prompt_ids.size(1) |
|
prompt_ids = prompt_completion_ids[:, :prompt_length] |
|
completion_ids = prompt_completion_ids[:, prompt_length:] |
|
|
|
|
|
is_eos = completion_ids == self.processing_class.eos_token_id |
|
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) |
|
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] |
|
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) |
|
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() |
|
|
|
|
|
|
|
completion_ids_list = [ |
|
[id.item() for id, m in zip(row, mask_row) if m] for row, mask_row in zip(completion_ids, completion_mask) |
|
] |
|
|
|
|
|
completion_lengths = completion_mask.sum(1) |
|
|
|
|
|
if self.mask_truncated_completions: |
|
truncated_completions = ~is_eos.any(dim=1) |
|
completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int() |
|
|
|
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
|
logits_to_keep = completion_ids.size(1) |
|
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
if self.num_iterations > 1 or self.args.steps_per_generation > self.args.gradient_accumulation_steps: |
|
old_per_token_logps = self._get_per_token_logps( |
|
self.model, prompt_completion_ids, attention_mask, logits_to_keep, batch_size |
|
) |
|
else: |
|
old_per_token_logps = None |
|
|
|
|
|
if self.beta != 0.0: |
|
if self.ref_model is not None: |
|
ref_per_token_logps = self._get_per_token_logps( |
|
self.ref_model, prompt_completion_ids, attention_mask, logits_to_keep |
|
) |
|
else: |
|
with self.accelerator.unwrap_model(self.model).disable_adapter(): |
|
ref_per_token_logps = self._get_per_token_logps( |
|
self.model, prompt_completion_ids, attention_mask, logits_to_keep |
|
) |
|
else: |
|
ref_per_token_logps = None |
|
|
|
|
|
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
if is_conversational(inputs[0]): |
|
completions = [] |
|
for prompt, completion in zip(prompts, completions_text): |
|
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else "" |
|
completions.append([{"role": "assistant", "content": bootstrap + completion}]) |
|
else: |
|
completions = completions_text |
|
|
|
|
|
|
|
|
|
rewards_per_func = self._calculate_rewards(inputs, prompts, completions, completion_ids_list) |
|
|
|
|
|
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) |
|
|
|
|
|
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1) |
|
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1) |
|
is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards)) |
|
|
|
|
|
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0) |
|
std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0) |
|
advantages = rewards - mean_grouped_rewards |
|
if self.scale_rewards: |
|
advantages = advantages / (std_grouped_rewards + 1e-4) |
|
|
|
|
|
process_slice = slice( |
|
self.accelerator.process_index * len(prompts), |
|
(self.accelerator.process_index + 1) * len(prompts), |
|
) |
|
all_process_advantages = advantages.clone() |
|
advantages = advantages[process_slice] |
|
|
|
|
|
if mode == "train": |
|
self.state.num_input_tokens_seen += self.accelerator.gather(attention_mask.sum()).sum().item() |
|
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen] |
|
|
|
|
|
agg_completion_lengths = self.accelerator.gather(completion_lengths) |
|
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item()) |
|
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item()) |
|
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item()) |
|
|
|
|
|
agg_terminated_with_eos = self.accelerator.gather(is_eos.any(dim=1)) |
|
term_completion_lengths = agg_completion_lengths[agg_terminated_with_eos] |
|
clipped_completions_ratio = 1 - len(term_completion_lengths) / len(agg_completion_lengths) |
|
self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio) |
|
if len(term_completion_lengths) == 0: |
|
term_completion_lengths = torch.zeros(1, device=device) |
|
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item()) |
|
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item()) |
|
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item()) |
|
|
|
|
|
for i, reward_func_name in enumerate(self.reward_func_names): |
|
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item() |
|
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards) |
|
std_rewards = nanstd(rewards_per_func[:, i]).item() |
|
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_rewards) |
|
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item()) |
|
self._metrics[mode]["reward_std"].append(std_grouped_rewards.mean().item()) |
|
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item()) |
|
|
|
|
|
self._textual_logs["prompt"].extend(gather_object(prompts_text)) |
|
self._textual_logs["completion"].extend(gather_object(completions_text)) |
|
for i, name in enumerate(self.reward_func_names): |
|
self._textual_logs["rewards"][name].extend(rewards_per_func[:, i].tolist()) |
|
self._textual_logs["advantages"].extend(all_process_advantages.tolist()) |
|
|
|
return { |
|
"prompt_ids": prompt_ids, |
|
"prompt_mask": prompt_mask, |
|
"completion_ids": completion_ids, |
|
"completion_mask": completion_mask, |
|
"advantages": advantages, |
|
"old_per_token_logps": old_per_token_logps, |
|
"ref_per_token_logps": ref_per_token_logps, |
|
} |
|
|
|
def compute_liger_loss(self, unwrapped_model, inputs): |
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
logits_to_keep = completion_ids.size(1) |
|
|
|
|
|
last_hidden_state = self._get_last_hidden_state(unwrapped_model, input_ids, attention_mask, logits_to_keep) |
|
|
|
|
|
loss, metrics = self.liger_grpo_loss( |
|
_input=last_hidden_state, |
|
lin_weight=unwrapped_model.lm_head.weight, |
|
selected_token_ids=completion_ids, |
|
attention_mask=completion_mask, |
|
advantages=inputs["advantages"], |
|
bias=unwrapped_model.lm_head.bias, |
|
old_per_token_logps=inputs["old_per_token_logps"], |
|
ref_per_token_logps=inputs["ref_per_token_logps"], |
|
) |
|
|
|
|
|
mean_kl = metrics[0] if self.beta != 0.0 else None |
|
clip_ratio = metrics[-1] |
|
|
|
mode = "train" if self.model.training else "eval" |
|
if self.beta != 0.0: |
|
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item()) |
|
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item()) |
|
return loss |
|
|
|
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None): |
|
if return_outputs: |
|
raise ValueError("The GRPOTrainer does not support returning outputs") |
|
|
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
bsz, qlen = input_ids.shape |
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
|
logits_to_keep = completion_ids.size(1) |
|
_input_ids = input_ids |
|
_logits_to_keep = logits_to_keep |
|
|
|
get_logps_func = \ |
|
lambda model, input_ids, attention_mask, logits_to_keep, batch_size=None, compute_entropy=False: \ |
|
self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) \ |
|
if hasattr(self, "_get_per_token_logps") else \ |
|
self._get_per_token_logps_and_entropies(model, input_ids, attention_mask, logits_to_keep, batch_size, compute_entropy)['logps'] |
|
|
|
per_token_logps = get_logps_func(model, input_ids, attention_mask, logits_to_keep) |
|
|
|
|
|
|
|
|
|
if self.beta != 0.0: |
|
with torch.inference_mode(), model.disable_adapter(): |
|
ref_per_token_logps = per_token_logps = get_logps_func(model, input_ids, attention_mask, logits_to_keep) |
|
else: |
|
ref_per_token_logps = None |
|
|
|
|
|
advantages = inputs["advantages"] |
|
|
|
|
|
|
|
old_hidden_states = inputs.get("old_per_token_logps", None) |
|
input_ids = input_ids[:, -logits_to_keep:] |
|
|
|
|
|
logit_softcapping = getattr(model.config, "final_logit_softcapping", 0) |
|
if logit_softcapping is None: logit_softcapping = 0 |
|
logit_scale_multiply = getattr(model.config, "logit_scale", 0) |
|
if logit_scale_multiply is None: logit_scale_multiply = 0 |
|
logit_scale_divide = getattr(model.config, "logits_scaling", 0) |
|
if logit_scale_divide is None: logit_scale_divide = 0 |
|
if per_token_logps is not None: |
|
|
|
if ref_per_token_logps is not None: |
|
ref_per_token_logps = ref_per_token_logps[:, :-1, :] |
|
per_token_logps = per_token_logps[:, :-1, :] |
|
|
|
loss, completion_length, mean_kl = grpo_compute_loss_slow( |
|
ref_per_token_logps, |
|
per_token_logps, |
|
old_hidden_states, |
|
input_ids, |
|
completion_mask, |
|
self.beta, |
|
advantages, |
|
loss_type = self.args.loss_type, |
|
epsilon_low = self.epsilon_low, |
|
epsilon_high = self.epsilon_high, |
|
max_completion_length = self.args.max_completion_length, |
|
delta = self.args.delta, |
|
temperature = self.args.temperature, |
|
logit_softcapping = logit_softcapping, |
|
logit_scale_multiply = logit_scale_multiply, |
|
logit_scale_divide = logit_scale_divide, |
|
) |
|
else: |
|
if hasattr(self.args, "loss_type"): |
|
loss, completion_length, mean_kl = grpo_accumulated_loss( |
|
trainer = self, |
|
input_ids = _input_ids, |
|
logits_to_keep = logits_to_keep, |
|
completion_mask = completion_mask, |
|
advantages = advantages, |
|
old_hidden_states = old_hidden_states, |
|
n_chunks = self.args.unsloth_num_chunks, |
|
loss_type = self.args.loss_type, |
|
epsilon_low = self.epsilon_low, |
|
epsilon_high = self.epsilon_high, |
|
max_completion_length = self.args.max_completion_length, |
|
delta = self.args.delta, |
|
temperature = self.args.temperature, |
|
logit_softcapping = logit_softcapping, |
|
logit_scale_multiply = logit_scale_multiply, |
|
logit_scale_divide = logit_scale_divide, |
|
attention_mask = attention_mask, |
|
) |
|
else: |
|
|
|
loss, completion_length, mean_kl = grpo_accumulated_loss( |
|
trainer = self, |
|
input_ids = _input_ids, |
|
logits_to_keep = logits_to_keep, |
|
completion_mask = completion_mask, |
|
advantages = advantages, |
|
old_hidden_states = old_hidden_states, |
|
n_chunks = self.args.unsloth_num_chunks, |
|
temperature = self.args.temperature, |
|
logit_softcapping = logit_softcapping, |
|
logit_scale_multiply = logit_scale_multiply, |
|
logit_scale_divide = logit_scale_divide, |
|
attention_mask = attention_mask, |
|
) |
|
pass |
|
pass |
|
|
|
|
|
|
|
|
|
if "train" in self._metrics: |
|
mode = "eval" if self.control.should_evaluate else "train" |
|
self._metrics[mode]["completion_length"].append(completion_length.item()) |
|
self._metrics[mode]["kl"].append(mean_kl.item()) |
|
else: |
|
self._metrics["completion_length"].append(completion_length.item()) |
|
self._metrics["kl"].append(mean_kl.item()) |
|
return loss |
|
|
|
def _compute_loss(self, model, inputs): |
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
logits_to_keep = completion_ids.size(1) |
|
|
|
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) |
|
|
|
|
|
if self.beta != 0.0: |
|
ref_per_token_logps = inputs["ref_per_token_logps"] |
|
per_token_kl = ( |
|
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1 |
|
) |
|
|
|
|
|
advantages = inputs["advantages"] |
|
|
|
|
|
|
|
old_per_token_logps = ( |
|
per_token_logps.detach() if inputs["old_per_token_logps"] is None else inputs["old_per_token_logps"] |
|
) |
|
coef_1 = torch.exp(per_token_logps - old_per_token_logps) |
|
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high) |
|
|
|
|
|
if self.args.delta is not None: |
|
coef_1 = torch.clamp(coef_1, max=self.args.delta) |
|
|
|
per_token_loss1 = coef_1 * advantages.unsqueeze(1) |
|
per_token_loss2 = coef_2 * advantages.unsqueeze(1) |
|
per_token_loss = -torch.min(per_token_loss1, per_token_loss2) |
|
if self.beta != 0.0: |
|
per_token_loss = per_token_loss + self.beta * per_token_kl |
|
|
|
if self.loss_type == "grpo": |
|
loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean() |
|
elif self.loss_type == "bnpo": |
|
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0) |
|
elif self.loss_type == "dr_grpo": |
|
loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length) |
|
else: |
|
raise ValueError(f"Unknown loss type: {self.loss_type}") |
|
|
|
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
if self.beta != 0.0: |
|
mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum() |
|
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item()) |
|
|
|
|
|
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0) |
|
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0) |
|
is_region_clipped = is_low_clipped | is_high_clipped |
|
|
|
low_clip = (is_low_clipped * completion_mask).sum() / completion_mask.sum() |
|
high_clip = (is_high_clipped * completion_mask).sum() / completion_mask.sum() |
|
clip_ratio = (is_region_clipped * completion_mask).sum() / completion_mask.sum() |
|
|
|
gathered_low_clip = self.accelerator.gather(low_clip) |
|
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item()) |
|
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item()) |
|
gathered_high_clip = self.accelerator.gather(high_clip) |
|
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item()) |
|
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item()) |
|
gathered_clip_ratio = self.accelerator.gather(clip_ratio) |
|
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item()) |
|
return loss |
|
|
|
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None): |
|
inputs = self._prepare_inputs(inputs) |
|
with torch.no_grad(): |
|
with self.compute_loss_context_manager(): |
|
loss = self.compute_loss(model, inputs) |
|
loss = loss.mean().detach() |
|
return loss, None, None |
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
mode = "train" if self.model.training else "eval" |
|
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} |
|
|
|
|
|
|
|
if mode == "eval": |
|
metrics = {f"eval_{key}": val for key, val in metrics.items()} |
|
|
|
logs = {**logs, **metrics} |
|
super().log(logs, start_time) |
|
self._metrics[mode].clear() |
|
|
|
if self.accelerator.is_main_process and self.log_completions: |
|
if is_rich_available(): |
|
print_prompt_completions_sample( |
|
self._textual_logs["prompt"], |
|
self._textual_logs["completion"], |
|
self._textual_logs["rewards"], |
|
self._textual_logs["advantages"], |
|
self.state.global_step, |
|
self.num_completions_to_print, |
|
) |
|
|
|
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None: |
|
import pandas as pd |
|
|
|
table = { |
|
"step": [str(self.state.global_step)] * len(self._textual_logs["prompt"]), |
|
"prompt": self._textual_logs["prompt"], |
|
"completion": self._textual_logs["completion"], |
|
**self._textual_logs["rewards"], |
|
"advantage": self._textual_logs["advantages"], |
|
} |
|
df = pd.DataFrame(table) |
|
if self.wandb_log_unique_prompts: |
|
df = df.drop_duplicates(subset=["prompt"]) |
|
wandb.log({"completions": wandb.Table(dataframe=df)}) |
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
if self.args.hub_model_id is None: |
|
model_name = Path(self.args.output_dir).name |
|
else: |
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
self.create_model_card(model_name=model_name) |
|
super()._save_checkpoint(model, trial) |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
|
|
if tags is None: |
|
tags = set() |
|
elif isinstance(tags, str): |
|
tags = {tags} |
|
else: |
|
tags = set(tags) |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.add("unsloth") |
|
|
|
tags.update(self._tag_names) |
|
|
|
citation = textwrap.dedent( |
|
"""\ |
|
@article{zhihong2024deepseekmath, |
|
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, |
|
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, |
|
year = 2024, |
|
eprint = {arXiv:2402.03300}, |
|
} |
|
""" |
|
) |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="GRPO", |
|
trainer_citation=citation, |
|
paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models", |
|
paper_id="2402.03300", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothGRPOTrainer(_UnslothGRPOTrainer): |
|
""" |
|
|
|
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the |
|
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language |
|
Models](https://huggingface.co/papers/2402.03300). |
|
|
|
Example: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from trl import GRPOTrainer |
|
|
|
dataset = load_dataset("trl-lib/tldr", split="train") |
|
def reward_func(completions, **kwargs): |
|
# Dummy reward function that rewards completions with more unique letters. |
|
return [float(len(set(completion))) for completion in completions] |
|
trainer = GRPOTrainer( |
|
model="Qwen/Qwen2-0.5B-Instruct", |
|
reward_funcs=reward_func, |
|
train_dataset=dataset, |
|
) |
|
|
|
trainer.train() |
|
``` |
|
|
|
Args: |
|
model (`Union[str, PreTrainedModel]`): |
|
Model to be trained. Can be either: |
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
path to a *directory* containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in |
|
`args.model_init_kwargs`. |
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`): |
|
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward |
|
functions with the prompts and completions and sum the rewards. Can be either: |
|
|
|
- A single reward function, such as: |
|
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
path to a *directory* containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the |
|
keyword arguments in `args.model_init_kwargs`. |
|
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported. |
|
- A custom reward function: The function is provided with the prompts and the generated completions, |
|
plus any additional columns in the dataset. It should return a list of rewards. Custom reward |
|
functions can also return None when the reward is not applicable to those samples. This is useful for |
|
multi-task training where different reward functions apply to different types of samples. When a |
|
reward function returns None for a sample, that reward function is excluded from the reward |
|
calculation for that sample. For more details, see [Using a custom reward |
|
function](#using-a-custom-reward-function). |
|
- A list of reward functions, where each item can independently be any of the above types. Mixing different |
|
types within the list (e.g., a string model ID and a custom reward function) is allowed. |
|
args ([`GRPOConfig`], *optional*, defaults to `None`): |
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is |
|
ignored. The format of the samples can be either: |
|
|
|
- [Standard](dataset_formats#standard): Each sample contains plain text. |
|
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role |
|
and content). |
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. |
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): |
|
Processing class used to process the data. The padding side must be set to "left". If `None`, the |
|
processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. A |
|
padding token, `processing_class.pad_token`, must be set. If the processing class has not set a padding |
|
token, `processing_class.eos_token` will be used as the default. |
|
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`): |
|
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: |
|
|
|
- A single processing class: Used when `reward_funcs` contains only one reward function. |
|
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. |
|
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is |
|
`None`, the tokenizer for the model is automatically loaded using |
|
[`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward |
|
functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes` |
|
are ignored. |
|
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`): |
|
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed |
|
in [here](https://huggingface.co/docs/transformers/main_classes/callback). |
|
|
|
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] |
|
method. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): |
|
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your |
|
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. |
|
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): |
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model, |
|
reward_funcs, |
|
args = None, |
|
train_dataset = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
reward_processing_classes = None, |
|
callbacks = None, |
|
peft_config = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothGRPOConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
if type(use_bf16) is not bool: use_bf16 = False |
|
use_fp16 = getattr(args, 'fp16', False) |
|
if type(use_fp16) is not bool: use_fp16 = False |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
other_metrics = [] |
|
if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs] |
|
else: _reward_funcs = reward_funcs |
|
for reward_func in _reward_funcs: |
|
try: |
|
reward_func_name = reward_func.__name__ |
|
if True: |
|
other_metrics.append(f'rewards/{reward_func_name}/mean') |
|
if True: |
|
other_metrics.append(f'rewards/{reward_func_name}/std') |
|
if False: |
|
other_metrics.append(f'rewards/{reward_func_name}') |
|
except: pass |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('grpo_trainer', other_metrics) |
|
|
|
super().__init__( |
|
model = model, |
|
reward_funcs = reward_funcs, |
|
args = args, |
|
train_dataset = train_dataset, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
reward_processing_classes = reward_processing_classes, |
|
callbacks = callbacks, |
|
peft_config = peft_config,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|