metadata
base_model: NousResearch/Meta-Llama-3-8B
tags:
- generated_from_trainer
model-index:
- name: out-llama8b-createcontext
results: []
See axolotl config
axolotl version: 0.4.0
base_model: NousResearch/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: b-mc2/sql-create-context
type: context_qa.load_v2
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out-llama8b-createcontext
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: meta-llama-8b-sql-create-context
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
out-llama8b-createcontext
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7175 | 0.01 | 1 | 0.7699 |
0.055 | 0.51 | 35 | 0.0394 |
0.03 | 1.01 | 70 | 0.0231 |
0.0215 | 1.5 | 105 | 0.0203 |
0.0185 | 2.01 | 140 | 0.0193 |
0.0106 | 2.5 | 175 | 0.0201 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0