metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: test
args: cord
metrics:
- name: Precision
type: precision
value: 0.9295774647887324
- name: Recall
type: recall
value: 0.938622754491018
- name: F1
type: f1
value: 0.9340782122905028
- name: Accuracy
type: accuracy
value: 0.9303904923599321
layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3404
- Precision: 0.9296
- Recall: 0.9386
- F1: 0.9341
- Accuracy: 0.9304
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 4.17 | 250 | 0.9987 | 0.7470 | 0.7957 | 0.7706 | 0.8043 |
1.3632 | 8.33 | 500 | 0.5299 | 0.8641 | 0.8855 | 0.8747 | 0.8829 |
1.3632 | 12.5 | 750 | 0.3861 | 0.8853 | 0.9124 | 0.8986 | 0.9126 |
0.3151 | 16.67 | 1000 | 0.3392 | 0.9154 | 0.9311 | 0.9232 | 0.9321 |
0.3151 | 20.83 | 1250 | 0.3382 | 0.9247 | 0.9371 | 0.9309 | 0.9308 |
0.1265 | 25.0 | 1500 | 0.3364 | 0.9225 | 0.9356 | 0.9290 | 0.9300 |
0.1265 | 29.17 | 1750 | 0.3333 | 0.9304 | 0.9401 | 0.9352 | 0.9321 |
0.0716 | 33.33 | 2000 | 0.3381 | 0.9296 | 0.9394 | 0.9345 | 0.9312 |
0.0716 | 37.5 | 2250 | 0.3474 | 0.9290 | 0.9409 | 0.9349 | 0.9321 |
0.0525 | 41.67 | 2500 | 0.3404 | 0.9296 | 0.9386 | 0.9341 | 0.9304 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2