whisper-base-cn-1 / README.md
arun100's picture
End of training
7795c52 verified
metadata
language:
  - zh
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Base Chinese-Mandarin
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 zh-CN
          type: mozilla-foundation/common_voice_16_0
          config: zh-CN
          split: test
          args: zh-CN
        metrics:
          - name: Wer
            type: wer
            value: 89.13440626359287

Whisper Base Chinese-Mandarin

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_16_0 zh-CN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5263
  • Wer: 89.1344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9769 1.02 500 0.6812 94.6411
0.8022 3.0 1000 0.6262 92.5794
0.9109 4.02 1500 0.6009 92.6229
0.7132 6.0 2000 0.5845 92.3967
0.8416 7.02 2500 0.5725 91.7616
0.6527 9.0 3000 0.5636 91.4659
0.812 10.02 3500 0.5561 90.8917
0.6584 12.0 4000 0.5504 90.7960
0.7825 13.02 4500 0.5455 90.4045
0.6174 15.0 5000 0.5416 90.0565
0.7925 16.02 5500 0.5381 90.0217
0.5983 18.0 6000 0.5355 89.7695
0.741 19.02 6500 0.5331 89.7086
0.5831 21.0 7000 0.5312 89.4998
0.7414 22.02 7500 0.5296 89.5259
0.5902 24.0 8000 0.5284 89.3084
0.7242 25.02 8500 0.5275 89.4041
0.5815 27.0 9000 0.5268 89.1518
0.717 28.02 9500 0.5265 89.2562
0.5887 30.0 10000 0.5263 89.1344

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0