whisper-base-fr-1 / README.md
arun100's picture
End of training
b9a0bc5 verified
metadata
language:
  - fr
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Base French
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 fr
          type: mozilla-foundation/common_voice_16_0
          config: fr
          split: test
          args: fr
        metrics:
          - name: Wer
            type: wer
            value: 27.650982108014144

Whisper Base French

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_16_0 fr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5654
  • Wer: 27.6510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 7000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.739 0.07 500 0.7506 35.0088
0.6131 1.07 1000 0.6595 31.4298
0.5311 2.07 1500 0.6301 30.6233
0.551 3.07 2000 0.6141 29.7819
0.4588 4.07 2500 0.6003 29.2527
0.4163 5.07 3000 0.5936 29.0292
0.4553 6.07 3500 0.5838 28.4799
0.4395 7.07 4000 0.5783 28.2488
0.4233 8.07 4500 0.5747 28.0779
0.4204 9.07 5000 0.5712 28.1122
0.4378 10.06 5500 0.5695 28.0578
0.4337 11.06 6000 0.5673 27.7817
0.4277 12.06 6500 0.5658 27.6634
0.419 13.06 7000 0.5654 27.6510

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0