whisper-base-ko-2 / README.md
arun100's picture
End of training
8695006 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Korean
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs ko_kr
          type: google/fleurs
          config: ko_kr
          split: test
          args: ko_kr
        metrics:
          - name: Wer
            type: wer
            value: 27.43440746610319

Whisper Base Korean

This model is a fine-tuned version of openai/whisper-base on the google/fleurs ko_kr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4901
  • Wer: 27.4344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3225 66.0 500 0.5002 27.9275
0.1185 133.0 1000 0.4901 27.4344
0.0468 199.0 1500 0.5047 27.4696
0.0268 266.0 2000 0.5147 27.8746
0.0189 333.0 2500 0.5218 28.0507
0.0145 399.0 3000 0.5273 28.4733
0.0121 466.0 3500 0.5318 28.6318
0.0107 533.0 4000 0.5352 28.6846
0.0098 599.0 4500 0.5376 28.8079
0.0095 666.0 5000 0.5385 28.8079

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0