metadata
language:
- bn
license: mit
base_model: bangla-speech-processing/BanglaASR
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Whisper Base Hindi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_0 bn
type: mozilla-foundation/common_voice_16_0
config: bn
split: test
args: bn
metrics:
- name: Wer
type: wer
value: 3.7265218830814386
Whisper Base Hindi
This model is a fine-tuned version of bangla-speech-processing/BanglaASR on the mozilla-foundation/common_voice_16_0 bn dataset. It achieves the following results on the evaluation set:
- Loss: 0.1281
- Wer: 3.7265
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1588 | 0.5 | 50 | 0.1495 | 3.7650 |
0.1267 | 1.0 | 100 | 0.1281 | 3.7265 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0