whisper-small-vi-2 / README.md
arun100's picture
Model save
282f25d verified
|
raw
history blame
2.09 kB
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: openai/whisper-small
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: vi
          split: test
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 26.397641797113238

openai/whisper-small

This model is a fine-tuned version of openai/whisper-small on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7127
  • Wer: 26.3976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0174 33.0 500 0.6207 24.6696
0.0045 66.0 1000 0.6705 24.5680
0.0027 99.01 1500 0.6945 25.2795
0.002 133.0 2000 0.7079 26.4790
0.0018 166.0 2500 0.7127 26.3976

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0