PyTorch
ssl-aasist
custom_code
ash56's picture
Add files using upload-large-folder tool
010952f verified
raw
history blame
17.8 kB
import logging
import os
import random
import sys
from collections import defaultdict
import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from scipy.io.wavfile import read
from scipy.ndimage import gaussian_filter1d
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
dir_path = os.path.dirname(__file__)
resynth_path = os.path.dirname(dir_path) + "/speech-resynthesis"
sys.path.append(resynth_path)
from dataset import parse_speaker, parse_style
from .utils import F0Stat
MAX_WAV_VALUE = 32768.0
logger = logging.getLogger(__name__)
def quantize_f0(speaker_to_f0, nbins, normalize, log):
f0_all = []
for speaker, f0 in speaker_to_f0.items():
f0 = f0.raw_data
if log:
f0 = f0.log()
mean = speaker_to_f0[speaker].mean_log if log else speaker_to_f0[speaker].mean
std = speaker_to_f0[speaker].std_log if log else speaker_to_f0[speaker].std
if normalize == "mean":
f0 = f0 - mean
elif normalize == "meanstd":
f0 = (f0 - mean) / std
f0_all.extend(f0.tolist())
hist, bin_x = np.histogram(f0_all, 100000)
cum_hist = np.cumsum(hist) / len(f0_all) * 100
bin_offset = []
bin_size = 100 / nbins
threshold = bin_size
for i in range(nbins - 1):
index = (np.abs(cum_hist - threshold)).argmin()
bin_offset.append(bin_x[index])
threshold += bin_size
bins = np.array(bin_offset)
bins = torch.FloatTensor(bins)
return bins
def save_ckpt(model, path, model_class, f0_min, f0_max, f0_bins, speaker_stats):
ckpt = {
"state_dict": model.state_dict(),
"padding_token": model.padding_token,
"model_class": model_class,
"speaker_stats": speaker_stats,
"f0_min": f0_min,
"f0_max": f0_max,
"f0_bins": f0_bins,
}
torch.save(ckpt, path)
def load_ckpt(path):
ckpt = torch.load(path)
ckpt["model_class"]["_target_"] = "emotion_models.pitch_predictor.CnnPredictor"
model = hydra.utils.instantiate(ckpt["model_class"])
model.load_state_dict(ckpt["state_dict"])
model.setup_f0_stats(
ckpt["f0_min"],
ckpt["f0_max"],
ckpt["f0_bins"],
ckpt["speaker_stats"],
)
return model
def freq2bin(f0, f0_min, f0_max, bins):
f0 = f0.clone()
f0[f0 < f0_min] = f0_min
f0[f0 > f0_max] = f0_max
f0 = torch.bucketize(f0, bins)
return f0
def bin2freq(x, f0_min, f0_max, bins, mode):
n_bins = len(bins) + 1
assert x.shape[-1] == n_bins
bins = torch.cat([torch.tensor([f0_min]), bins]).to(x.device)
if mode == "mean":
f0 = (x * bins).sum(-1, keepdims=True) / x.sum(-1, keepdims=True)
elif mode == "argmax":
idx = F.one_hot(x.argmax(-1), num_classes=n_bins)
f0 = (idx * bins).sum(-1, keepdims=True)
else:
raise NotImplementedError()
return f0[..., 0]
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def l1_loss(input, target):
return F.l1_loss(input=input.float(), target=target.float(), reduce=False)
def l2_loss(input, target):
return F.mse_loss(input=input.float(), target=target.float(), reduce=False)
class Collator:
def __init__(self, padding_idx):
self.padding_idx = padding_idx
def __call__(self, batch):
tokens = [item[0] for item in batch]
lengths = [len(item) for item in tokens]
tokens = torch.nn.utils.rnn.pad_sequence(
tokens, batch_first=True, padding_value=self.padding_idx
)
f0 = [item[1] for item in batch]
f0 = torch.nn.utils.rnn.pad_sequence(
f0, batch_first=True, padding_value=self.padding_idx
)
f0_raw = [item[2] for item in batch]
f0_raw = torch.nn.utils.rnn.pad_sequence(
f0_raw, batch_first=True, padding_value=self.padding_idx
)
spk = [item[3] for item in batch]
spk = torch.LongTensor(spk)
gst = [item[4] for item in batch]
gst = torch.LongTensor(gst)
mask = tokens != self.padding_idx
return tokens, f0, f0_raw, spk, gst, mask, lengths
class CnnPredictor(nn.Module):
def __init__(
self,
n_tokens,
emb_dim,
channels,
kernel,
dropout,
n_layers,
spk_emb,
gst_emb,
n_bins,
f0_pred,
f0_log,
f0_norm,
):
super(CnnPredictor, self).__init__()
self.n_tokens = n_tokens
self.emb_dim = emb_dim
self.f0_log = f0_log
self.f0_pred = f0_pred
self.padding_token = n_tokens
self.f0_norm = f0_norm
# add 1 extra embedding for padding token, set the padding index to be the last token
# (tokens from the clustering start at index 0)
self.token_emb = nn.Embedding(
n_tokens + 1, emb_dim, padding_idx=self.padding_token
)
self.spk_emb = spk_emb
self.gst_emb = nn.Embedding(20, gst_emb)
self.setup = False
feats = emb_dim + gst_emb
# feats = emb_dim + gst_emb + (256 if spk_emb else 0)
layers = [
nn.Sequential(
Rearrange("b t c -> b c t"),
nn.Conv1d(
feats, channels, kernel_size=kernel, padding=(kernel - 1) // 2
),
Rearrange("b c t -> b t c"),
nn.ReLU(),
nn.LayerNorm(channels),
nn.Dropout(dropout),
)
]
for _ in range(n_layers - 1):
layers += [
nn.Sequential(
Rearrange("b t c -> b c t"),
nn.Conv1d(
channels,
channels,
kernel_size=kernel,
padding=(kernel - 1) // 2,
),
Rearrange("b c t -> b t c"),
nn.ReLU(),
nn.LayerNorm(channels),
nn.Dropout(dropout),
)
]
self.conv_layer = nn.ModuleList(layers)
self.proj = nn.Linear(channels, n_bins)
def forward(self, x, gst=None):
x = self.token_emb(x)
feats = [x]
if gst is not None:
gst = self.gst_emb(gst)
gst = rearrange(gst, "b c -> b c 1")
gst = F.interpolate(gst, x.shape[1])
gst = rearrange(gst, "b c t -> b t c")
feats.append(gst)
x = torch.cat(feats, dim=-1)
for i, conv in enumerate(self.conv_layer):
if i != 0:
x = conv(x) + x
else:
x = conv(x)
x = self.proj(x)
x = x.squeeze(-1)
if self.f0_pred == "mean":
x = torch.sigmoid(x)
elif self.f0_pred == "argmax":
x = torch.softmax(x, dim=-1)
else:
raise NotImplementedError
return x
def setup_f0_stats(self, f0_min, f0_max, f0_bins, speaker_stats):
self.f0_min = f0_min
self.f0_max = f0_max
self.f0_bins = f0_bins
self.speaker_stats = speaker_stats
self.setup = True
def inference(self, x, spk_id=None, gst=None):
assert (
self.setup == True
), "make sure that `setup_f0_stats` was called before inference!"
probs = self(x, gst)
f0 = bin2freq(probs, self.f0_min, self.f0_max, self.f0_bins, self.f0_pred)
for i in range(f0.shape[0]):
mean = (
self.speaker_stats[spk_id[i].item()].mean_log
if self.f0_log
else self.speaker_stats[spk_id[i].item()].mean
)
std = (
self.speaker_stats[spk_id[i].item()].std_log
if self.f0_log
else self.speaker_stats[spk_id[i].item()].std
)
if self.f0_norm == "mean":
f0[i] = f0[i] + mean
if self.f0_norm == "meanstd":
f0[i] = (f0[i] * std) + mean
if self.f0_log:
f0 = f0.exp()
return f0
class PitchDataset(Dataset):
def __init__(
self,
tsv_path,
km_path,
substring,
spk,
spk2id,
gst,
gst2id,
f0_bins,
f0_bin_type,
f0_smoothing,
f0_norm,
f0_log,
):
lines = open(tsv_path, "r").readlines()
self.root, self.tsv = lines[0], lines[1:]
self.root = self.root.strip()
self.km = open(km_path, "r").readlines()
print(f"loaded {len(self.km)} files")
self.spk = spk
self.spk2id = spk2id
self.gst = gst
self.gst2id = gst2id
self.f0_bins = f0_bins
self.f0_smoothing = f0_smoothing
self.f0_norm = f0_norm
self.f0_log = f0_log
if substring != "":
tsv, km = [], []
for tsv_line, km_line in zip(self.tsv, self.km):
if substring.lower() in tsv_line.lower():
tsv.append(tsv_line)
km.append(km_line)
self.tsv, self.km = tsv, km
print(f"after filtering: {len(self.km)} files")
self.speaker_stats = self._compute_f0_stats()
self.f0_min, self.f0_max = self._compute_f0_minmax()
if f0_bin_type == "adaptive":
self.f0_bins = quantize_f0(
self.speaker_stats, self.f0_bins, self.f0_norm, self.f0_log
)
elif f0_bin_type == "uniform":
self.f0_bins = torch.linspace(self.f0_min, self.f0_max, self.f0_bins + 1)[
1:-1
]
else:
raise NotImplementedError
print(f"f0 min: {self.f0_min}, f0 max: {self.f0_max}")
print(f"bins: {self.f0_bins} (shape: {self.f0_bins.shape})")
def __len__(self):
return len(self.km)
def _load_f0(self, tsv_line):
tsv_line = tsv_line.split("\t")[0]
f0 = self.root + "/" + tsv_line.replace(".wav", ".yaapt.f0.npy")
f0 = np.load(f0)
f0 = torch.FloatTensor(f0)
return f0
def _preprocess_f0(self, f0, spk):
mask = f0 != -999999 # process all frames
# mask = (f0 != 0) # only process voiced frames
mean = (
self.speaker_stats[spk].mean_log
if self.f0_log
else self.speaker_stats[spk].mean
)
std = (
self.speaker_stats[spk].std_log
if self.f0_log
else self.speaker_stats[spk].std
)
if self.f0_log:
f0[f0 == 0] = 1e-5
f0[mask] = f0[mask].log()
if self.f0_norm == "mean":
f0[mask] = f0[mask] - mean
if self.f0_norm == "meanstd":
f0[mask] = (f0[mask] - mean) / std
return f0
def _compute_f0_minmax(self):
f0_min, f0_max = float("inf"), -float("inf")
for tsv_line in tqdm(self.tsv, desc="computing f0 minmax"):
spk = self.spk2id[parse_speaker(tsv_line, self.spk)]
f0 = self._load_f0(tsv_line)
f0 = self._preprocess_f0(f0, spk)
f0_min = min(f0_min, f0.min().item())
f0_max = max(f0_max, f0.max().item())
return f0_min, f0_max
def _compute_f0_stats(self):
from functools import partial
speaker_stats = defaultdict(partial(F0Stat, True))
for tsv_line in tqdm(self.tsv, desc="computing speaker stats"):
spk = self.spk2id[parse_speaker(tsv_line, self.spk)]
f0 = self._load_f0(tsv_line)
mask = f0 != 0
f0 = f0[mask] # compute stats only on voiced parts
speaker_stats[spk].update(f0)
return speaker_stats
def __getitem__(self, i):
x = self.km[i]
x = x.split(" ")
x = list(map(int, x))
x = torch.LongTensor(x)
gst = parse_style(self.tsv[i], self.gst)
gst = self.gst2id[gst]
spk = parse_speaker(self.tsv[i], self.spk)
spk = self.spk2id[spk]
f0_raw = self._load_f0(self.tsv[i])
f0 = self._preprocess_f0(f0_raw.clone(), spk)
f0 = F.interpolate(f0.unsqueeze(0).unsqueeze(0), x.shape[0])[0, 0]
f0_raw = F.interpolate(f0_raw.unsqueeze(0).unsqueeze(0), x.shape[0])[0, 0]
f0 = freq2bin(f0, f0_min=self.f0_min, f0_max=self.f0_max, bins=self.f0_bins)
f0 = F.one_hot(f0.long(), num_classes=len(self.f0_bins) + 1).float()
if self.f0_smoothing > 0:
f0 = torch.tensor(
gaussian_filter1d(f0.float().numpy(), sigma=self.f0_smoothing)
)
return x, f0, f0_raw, spk, gst
def train(cfg):
device = "cuda:0"
# add 1 extra embedding for padding token, set the padding index to be the last token
# (tokens from the clustering start at index 0)
padding_token = cfg.n_tokens
collate_fn = Collator(padding_idx=padding_token)
train_ds = PitchDataset(
cfg.train_tsv,
cfg.train_km,
substring=cfg.substring,
spk=cfg.spk,
spk2id=cfg.spk2id,
gst=cfg.gst,
gst2id=cfg.gst2id,
f0_bins=cfg.f0_bins,
f0_bin_type=cfg.f0_bin_type,
f0_smoothing=cfg.f0_smoothing,
f0_norm=cfg.f0_norm,
f0_log=cfg.f0_log,
)
valid_ds = PitchDataset(
cfg.valid_tsv,
cfg.valid_km,
substring=cfg.substring,
spk=cfg.spk,
spk2id=cfg.spk2id,
gst=cfg.gst,
gst2id=cfg.gst2id,
f0_bins=cfg.f0_bins,
f0_bin_type=cfg.f0_bin_type,
f0_smoothing=cfg.f0_smoothing,
f0_norm=cfg.f0_norm,
f0_log=cfg.f0_log,
)
train_dl = DataLoader(
train_ds,
num_workers=0,
batch_size=cfg.batch_size,
shuffle=True,
collate_fn=collate_fn,
)
valid_dl = DataLoader(
valid_ds, num_workers=0, batch_size=16, shuffle=False, collate_fn=collate_fn
)
f0_min = train_ds.f0_min
f0_max = train_ds.f0_max
f0_bins = train_ds.f0_bins
speaker_stats = train_ds.speaker_stats
model = hydra.utils.instantiate(cfg["model"]).to(device)
model.setup_f0_stats(f0_min, f0_max, f0_bins, speaker_stats)
optimizer = hydra.utils.instantiate(cfg.optimizer, model.parameters())
best_loss = float("inf")
for epoch in range(cfg.epochs):
train_loss, train_l2_loss, train_l2_voiced_loss = run_epoch(
model, train_dl, optimizer, device, cfg, mode="train"
)
valid_loss, valid_l2_loss, valid_l2_voiced_loss = run_epoch(
model, valid_dl, None, device, cfg, mode="valid"
)
print(
f"[epoch {epoch}] train loss: {train_loss:.3f}, l2 loss: {train_l2_loss:.3f}, l2 voiced loss: {train_l2_voiced_loss:.3f}"
)
print(
f"[epoch {epoch}] valid loss: {valid_loss:.3f}, l2 loss: {valid_l2_loss:.3f}, l2 voiced loss: {valid_l2_voiced_loss:.3f}"
)
if valid_l2_voiced_loss < best_loss:
path = f"{os.getcwd()}/pitch_predictor.ckpt"
save_ckpt(model, path, cfg["model"], f0_min, f0_max, f0_bins, speaker_stats)
best_loss = valid_l2_voiced_loss
print(f"saved checkpoint: {path}")
print(f"[epoch {epoch}] best loss: {best_loss:.3f}")
def run_epoch(model, loader, optimizer, device, cfg, mode):
if mode == "train":
model.train()
else:
model.eval()
epoch_loss = 0
l1 = 0
l1_voiced = 0
for x, f0_bin, f0_raw, spk_id, gst, mask, _ in tqdm(loader):
x, f0_bin, f0_raw, spk_id, gst, mask = (
x.to(device),
f0_bin.to(device),
f0_raw.to(device),
spk_id.to(device),
gst.to(device),
mask.to(device),
)
b, t, n_bins = f0_bin.shape
yhat = model(x, gst)
nonzero_mask = (f0_raw != 0).logical_and(mask)
yhat_raw = model.inference(x, spk_id, gst)
expanded_mask = mask.unsqueeze(-1).expand(-1, -1, n_bins)
if cfg.f0_pred == "mean":
loss = F.binary_cross_entropy(
yhat[expanded_mask], f0_bin[expanded_mask]
).mean()
elif cfg.f0_pred == "argmax":
loss = F.cross_entropy(
rearrange(yhat, "b t d -> (b t) d"),
rearrange(f0_bin.argmax(-1), "b t -> (b t)"),
reduce=False,
)
loss = rearrange(loss, "(b t) -> b t", b=b, t=t)
loss = (loss * mask).sum() / mask.float().sum()
else:
raise NotImplementedError
l1 += F.l1_loss(yhat_raw[mask], f0_raw[mask]).item()
l1_voiced += F.l1_loss(yhat_raw[nonzero_mask], f0_raw[nonzero_mask]).item()
epoch_loss += loss.item()
if mode == "train":
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
print(f"{mode} example y: {f0_bin.argmax(-1)[0, 50:60].tolist()}")
print(f"{mode} example yhat: {yhat.argmax(-1)[0, 50:60].tolist()}")
print(f"{mode} example y: {f0_raw[0, 50:60].round().tolist()}")
print(f"{mode} example yhat: {yhat_raw[0, 50:60].round().tolist()}")
return epoch_loss / len(loader), l1 / len(loader), l1_voiced / len(loader)
@hydra.main(config_path=dir_path, config_name="pitch_predictor.yaml")
def main(cfg):
np.random.seed(1)
random.seed(1)
torch.manual_seed(1)
from hydra.core.hydra_config import HydraConfig
overrides = {
x.split("=")[0]: x.split("=")[1]
for x in HydraConfig.get().overrides.task
if "/" not in x
}
print(f"{cfg}")
train(cfg)
if __name__ == "__main__":
main()