|
# Finetuning RoBERTa on GLUE tasks |
|
|
|
### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands: |
|
```bash |
|
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py |
|
python download_glue_data.py --data_dir glue_data --tasks all |
|
``` |
|
|
|
### 2) Preprocess GLUE task data: |
|
```bash |
|
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name> |
|
``` |
|
`glue_task_name` is one of the following: |
|
`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}` |
|
Use `ALL` for preprocessing all the glue tasks. |
|
|
|
### 3) Fine-tuning on GLUE task: |
|
Example fine-tuning cmd for `RTE` task |
|
```bash |
|
ROBERTA_PATH=/path/to/roberta/model.pt |
|
|
|
CUDA_VISIBLE_DEVICES=0 fairseq-hydra-train -config-dir examples/roberta/config/finetuning --config-name rte \ |
|
task.data=RTE-bin checkpoint.restore_file=$ROBERTA_PATH |
|
``` |
|
|
|
There are additional config files for each of the GLUE tasks in the examples/roberta/config/finetuning directory. |
|
|
|
**Note:** |
|
|
|
a) Above cmd-args and hyperparams are tested on one Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`. |
|
|
|
b) All the settings in above table are suggested settings based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search. |
|
|
|
### Inference on GLUE task |
|
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet: |
|
|
|
```python |
|
from fairseq.models.roberta import RobertaModel |
|
|
|
roberta = RobertaModel.from_pretrained( |
|
'checkpoints/', |
|
checkpoint_file='checkpoint_best.pt', |
|
data_name_or_path='RTE-bin' |
|
) |
|
|
|
label_fn = lambda label: roberta.task.label_dictionary.string( |
|
[label + roberta.task.label_dictionary.nspecial] |
|
) |
|
ncorrect, nsamples = 0, 0 |
|
roberta.cuda() |
|
roberta.eval() |
|
with open('glue_data/RTE/dev.tsv') as fin: |
|
fin.readline() |
|
for index, line in enumerate(fin): |
|
tokens = line.strip().split('\t') |
|
sent1, sent2, target = tokens[1], tokens[2], tokens[3] |
|
tokens = roberta.encode(sent1, sent2) |
|
prediction = roberta.predict('sentence_classification_head', tokens).argmax().item() |
|
prediction_label = label_fn(prediction) |
|
ncorrect += int(prediction_label == target) |
|
nsamples += 1 |
|
print('| Accuracy: ', float(ncorrect)/float(nsamples)) |
|
|
|
``` |
|
|