wav2vec2-large-xls-r-300m-finetune-dali

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2332
  • Wer: 0.7088

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
9.1246 0.49 100 4.0976 1.0
4.5372 0.97 200 3.2580 1.0
3.2467 1.46 300 3.0922 1.0001
3.4683 1.94 400 2.7944 0.9588
2.56 2.43 500 2.7701 0.9228
3.5665 2.91 600 2.7017 0.9356
3.5163 3.4 700 2.6731 0.9019
2.7201 3.88 800 2.7024 0.9067
3.1927 4.37 900 2.7681 0.9083
2.6796 4.85 1000 2.6577 0.8902
2.7204 5.34 1100 2.5810 0.8899
2.8474 5.83 1200 2.6795 0.9008
3.4242 6.31 1300 2.5315 0.8699
2.6685 6.8 1400 2.6477 0.8743
2.8734 7.28 1500 2.6630 0.8772
3.0146 7.77 1600 2.5337 0.8667
2.1542 8.25 1700 2.5623 0.8345
2.8927 8.74 1800 2.4624 0.8185
2.4501 9.22 1900 2.5193 0.8196
2.5283 9.71 2000 2.5110 0.8231
2.7019 10.19 2100 2.5571 0.7776
1.8019 10.68 2200 2.4725 0.7735
1.8982 11.17 2300 2.5294 0.7662
1.553 11.65 2400 2.5773 0.7662
1.6364 12.14 2500 2.5883 0.7568
1.9175 12.62 2600 2.4496 0.7405
1.5186 13.11 2700 2.4917 0.7410
1.911 13.59 2800 2.4941 0.7280
1.389 14.08 2900 2.4738 0.7187
1.2499 14.56 3000 2.5277 0.7236
1.3069 15.05 3100 2.5051 0.7291
1.1218 15.53 3200 2.6532 0.7207
1.2423 16.02 3300 2.5690 0.7197
1.0828 16.5 3400 2.6145 0.7216
1.0926 16.99 3500 2.5524 0.7114
1.0012 17.48 3600 2.5685 0.7108
0.9849 17.96 3700 2.6362 0.7081
0.9141 18.45 3800 2.6395 0.7151
0.9115 18.93 3900 2.6901 0.7051
0.8355 19.42 4000 2.6799 0.7150
0.8134 19.9 4100 2.8110 0.7091
0.7593 20.39 4200 2.8204 0.7123
0.7528 20.87 4300 2.8369 0.7067
0.6899 21.36 4400 2.7883 0.7138
0.6799 21.84 4500 2.8745 0.7088
0.6268 22.33 4600 2.9128 0.7137
0.5877 22.82 4700 2.9422 0.7111
0.5789 23.3 4800 2.9755 0.7143
0.5338 23.79 4900 2.9797 0.7115
0.5143 24.27 5000 3.0170 0.7230
0.5019 24.76 5100 3.0441 0.7161
0.4791 25.24 5200 3.1360 0.7084
0.4557 25.73 5300 3.1516 0.7090
0.4293 26.21 5400 3.1535 0.7195
0.4116 26.7 5500 3.1685 0.7177
0.4108 27.18 5600 3.1756 0.7081
0.4012 27.67 5700 3.1828 0.7093
0.3753 28.16 5800 3.2102 0.7057
0.3605 28.64 5900 3.2137 0.7044
0.3678 29.13 6000 3.2202 0.7107
0.3541 29.61 6100 3.2332 0.7088

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ashanhr/wav2vec2-large-xls-r-300m-finetune-dali

Finetuned
(524)
this model