End of training
Browse files
README.md
CHANGED
@@ -1,201 +1,124 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-xls-r-300m-finetune-dali
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-xls-r-300m-finetune-dali
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.2332
|
21 |
+
- Wer: 0.7088
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 16
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 30
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
56 |
+
| 9.1246 | 0.49 | 100 | 4.0976 | 1.0 |
|
57 |
+
| 4.5372 | 0.97 | 200 | 3.2580 | 1.0 |
|
58 |
+
| 3.2467 | 1.46 | 300 | 3.0922 | 1.0001 |
|
59 |
+
| 3.4683 | 1.94 | 400 | 2.7944 | 0.9588 |
|
60 |
+
| 2.56 | 2.43 | 500 | 2.7701 | 0.9228 |
|
61 |
+
| 3.5665 | 2.91 | 600 | 2.7017 | 0.9356 |
|
62 |
+
| 3.5163 | 3.4 | 700 | 2.6731 | 0.9019 |
|
63 |
+
| 2.7201 | 3.88 | 800 | 2.7024 | 0.9067 |
|
64 |
+
| 3.1927 | 4.37 | 900 | 2.7681 | 0.9083 |
|
65 |
+
| 2.6796 | 4.85 | 1000 | 2.6577 | 0.8902 |
|
66 |
+
| 2.7204 | 5.34 | 1100 | 2.5810 | 0.8899 |
|
67 |
+
| 2.8474 | 5.83 | 1200 | 2.6795 | 0.9008 |
|
68 |
+
| 3.4242 | 6.31 | 1300 | 2.5315 | 0.8699 |
|
69 |
+
| 2.6685 | 6.8 | 1400 | 2.6477 | 0.8743 |
|
70 |
+
| 2.8734 | 7.28 | 1500 | 2.6630 | 0.8772 |
|
71 |
+
| 3.0146 | 7.77 | 1600 | 2.5337 | 0.8667 |
|
72 |
+
| 2.1542 | 8.25 | 1700 | 2.5623 | 0.8345 |
|
73 |
+
| 2.8927 | 8.74 | 1800 | 2.4624 | 0.8185 |
|
74 |
+
| 2.4501 | 9.22 | 1900 | 2.5193 | 0.8196 |
|
75 |
+
| 2.5283 | 9.71 | 2000 | 2.5110 | 0.8231 |
|
76 |
+
| 2.7019 | 10.19 | 2100 | 2.5571 | 0.7776 |
|
77 |
+
| 1.8019 | 10.68 | 2200 | 2.4725 | 0.7735 |
|
78 |
+
| 1.8982 | 11.17 | 2300 | 2.5294 | 0.7662 |
|
79 |
+
| 1.553 | 11.65 | 2400 | 2.5773 | 0.7662 |
|
80 |
+
| 1.6364 | 12.14 | 2500 | 2.5883 | 0.7568 |
|
81 |
+
| 1.9175 | 12.62 | 2600 | 2.4496 | 0.7405 |
|
82 |
+
| 1.5186 | 13.11 | 2700 | 2.4917 | 0.7410 |
|
83 |
+
| 1.911 | 13.59 | 2800 | 2.4941 | 0.7280 |
|
84 |
+
| 1.389 | 14.08 | 2900 | 2.4738 | 0.7187 |
|
85 |
+
| 1.2499 | 14.56 | 3000 | 2.5277 | 0.7236 |
|
86 |
+
| 1.3069 | 15.05 | 3100 | 2.5051 | 0.7291 |
|
87 |
+
| 1.1218 | 15.53 | 3200 | 2.6532 | 0.7207 |
|
88 |
+
| 1.2423 | 16.02 | 3300 | 2.5690 | 0.7197 |
|
89 |
+
| 1.0828 | 16.5 | 3400 | 2.6145 | 0.7216 |
|
90 |
+
| 1.0926 | 16.99 | 3500 | 2.5524 | 0.7114 |
|
91 |
+
| 1.0012 | 17.48 | 3600 | 2.5685 | 0.7108 |
|
92 |
+
| 0.9849 | 17.96 | 3700 | 2.6362 | 0.7081 |
|
93 |
+
| 0.9141 | 18.45 | 3800 | 2.6395 | 0.7151 |
|
94 |
+
| 0.9115 | 18.93 | 3900 | 2.6901 | 0.7051 |
|
95 |
+
| 0.8355 | 19.42 | 4000 | 2.6799 | 0.7150 |
|
96 |
+
| 0.8134 | 19.9 | 4100 | 2.8110 | 0.7091 |
|
97 |
+
| 0.7593 | 20.39 | 4200 | 2.8204 | 0.7123 |
|
98 |
+
| 0.7528 | 20.87 | 4300 | 2.8369 | 0.7067 |
|
99 |
+
| 0.6899 | 21.36 | 4400 | 2.7883 | 0.7138 |
|
100 |
+
| 0.6799 | 21.84 | 4500 | 2.8745 | 0.7088 |
|
101 |
+
| 0.6268 | 22.33 | 4600 | 2.9128 | 0.7137 |
|
102 |
+
| 0.5877 | 22.82 | 4700 | 2.9422 | 0.7111 |
|
103 |
+
| 0.5789 | 23.3 | 4800 | 2.9755 | 0.7143 |
|
104 |
+
| 0.5338 | 23.79 | 4900 | 2.9797 | 0.7115 |
|
105 |
+
| 0.5143 | 24.27 | 5000 | 3.0170 | 0.7230 |
|
106 |
+
| 0.5019 | 24.76 | 5100 | 3.0441 | 0.7161 |
|
107 |
+
| 0.4791 | 25.24 | 5200 | 3.1360 | 0.7084 |
|
108 |
+
| 0.4557 | 25.73 | 5300 | 3.1516 | 0.7090 |
|
109 |
+
| 0.4293 | 26.21 | 5400 | 3.1535 | 0.7195 |
|
110 |
+
| 0.4116 | 26.7 | 5500 | 3.1685 | 0.7177 |
|
111 |
+
| 0.4108 | 27.18 | 5600 | 3.1756 | 0.7081 |
|
112 |
+
| 0.4012 | 27.67 | 5700 | 3.1828 | 0.7093 |
|
113 |
+
| 0.3753 | 28.16 | 5800 | 3.2102 | 0.7057 |
|
114 |
+
| 0.3605 | 28.64 | 5900 | 3.2137 | 0.7044 |
|
115 |
+
| 0.3678 | 29.13 | 6000 | 3.2202 | 0.7107 |
|
116 |
+
| 0.3541 | 29.61 | 6100 | 3.2332 | 0.7088 |
|
117 |
+
|
118 |
+
|
119 |
+
### Framework versions
|
120 |
+
|
121 |
+
- Transformers 4.38.1
|
122 |
+
- Pytorch 2.1.2
|
123 |
+
- Datasets 2.18.0
|
124 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1261926380
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70f62a607c1bfb83493da95b0a6fdda063b490b5ccd0853a01abfa5a1fea7472
|
3 |
size 1261926380
|
runs/Mar14_20-46-59_eed3875dad1c/events.out.tfevents.1710449331.eed3875dad1c.26.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84973c0fcf5d24774b3ecaf74734e85d7e367107153a720a9a904f72e242f829
|
3 |
+
size 38705
|