ashish-001's picture
Update README.md
0e8b08c verified
metadata
license: apache-2.0
datasets:
  - SetFit/amazon_reviews_multi_en
language:
  - en
metrics:
  - accuracy
base_model:
  - distilbert/distilbert-base-uncased
pipeline_tag: text-classification
library_name: transformers

This repository contains a fine-tuned DistilBERT model for sentiment classification of Amazon product reviews The model classifies a given review into two classes: Positive and Negative


Model Overview

Figure 1: Confusion matrix for test data image/png

Figure 2: Confusion matrix for validation data

image/png

How to Use the Model

Below is an example of how to load and use the model for sentiment classification:

from transformers import DistilBertTokenizer,DistilBertForSequenceClassification
import torch

# Load the tokenizer and model
model = DistilBertForSequenceClassification.from_pretrained(
    "ashish-001/DistilBert-Amazon-review-sentiment-classifier")
tokenizer = DistilBertTokenizer.from_pretrained(
    "ashish-001/DistilBert-Amazon-review-sentiment-classifier")

# Example usage
text = "This product is amazing!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
sentiment = torch.argmax(logits, dim=1).item()

print(f"Predicted sentiment: {'Positive' if sentiment else 'Negative'}")