|
--- |
|
tags: |
|
- autotrain |
|
- summarization |
|
language: |
|
- en |
|
widget: |
|
- text: > |
|
class Solution(object): |
|
def isValid(self, s): |
|
stack = [] |
|
mapping = {")": "(", "}": "{", "]": "["} |
|
for char in s: |
|
if char in mapping: |
|
top_element = stack.pop() if stack else '#' |
|
if mapping[char] != top_element: |
|
return False |
|
else: |
|
stack.append(char) |
|
return not stack |
|
datasets: |
|
- sagard21/autotrain-data-code-explainer |
|
co2_eq_emissions: |
|
emissions: 5.393079045128973 |
|
license: mit |
|
pipeline_tag: summarization |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Summarization |
|
- Model ID: 2745581349 |
|
- CO2 Emissions (in grams): 5.3931 |
|
|
|
# Model Description |
|
|
|
This model is an attempt to simplify code understanding by generating line by line explanation of a source code. This model was fine-tuned using the Salesforce/codet5-large model. Currently it is trained on a small subset of Python snippets. |
|
|
|
# Model Usage |
|
|
|
```py |
|
from transformers import ( |
|
AutoModelForSeq2SeqLM, |
|
AutoTokenizer, |
|
AutoConfig, |
|
pipeline, |
|
) |
|
|
|
model_name = "ashwinR/CodeExplainer" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
config = AutoConfig.from_pretrained(model_name) |
|
|
|
model.eval() |
|
|
|
pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer) |
|
|
|
raw_code = """ |
|
def preprocess(text: str) -> str: |
|
text = str(text) |
|
text = text.replace("\n", " ") |
|
tokenized_text = text.split(" ") |
|
preprocessed_text = " ".join([token for token in tokenized_text if token]) |
|
|
|
return preprocessed_text |
|
""" |
|
|
|
print(pipe(raw_code)[0]["summary_text"]) |
|
|
|
``` |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 2.156 |
|
- Rouge1: 29.375 |
|
- Rouge2: 18.128 |
|
- RougeL: 25.445 |
|
- RougeLsum: 28.084 |
|
- Gen Len: 19.000 |
|
|