library_name: peft | |
license: apache-2.0 | |
base_model: albert/albert-base-v2 | |
tags: | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- f1 | |
- precision | |
- recall | |
model-index: | |
- name: results_lora | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# results_lora | |
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.2590 | |
- Accuracy: 0.9014 | |
- F1: 0.9044 | |
- Precision: 0.8925 | |
- Recall: 0.9167 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 3e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 64 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- lr_scheduler_warmup_steps: 500 | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | | |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | |
| 0.3298 | 1.0 | 4210 | 0.2669 | 0.8922 | 0.8934 | 0.8995 | 0.8874 | | |
| 0.236 | 2.0 | 8420 | 0.2702 | 0.9048 | 0.9089 | 0.8865 | 0.9324 | | |
| 0.1772 | 3.0 | 12630 | 0.2590 | 0.9014 | 0.9044 | 0.8925 | 0.9167 | | |
### Framework versions | |
- PEFT 0.13.2 | |
- Transformers 4.45.2 | |
- Pytorch 2.5.0+cu124 | |
- Datasets 3.0.1 | |
- Tokenizers 0.20.1 |